
 

A neural-sampling based model of early visual processing based on leaky 
integrate-and-fire neurons 

Olshausen & Field [1], and a series of studies building on it, have shown that V1 receptive fields                  
emerge from learning in a linear Gaussian model of natural images under a sparse sprior. How                
V1 neurons might implement inference in such a system is less clear, and prior work has                
typically assumed that network dynamics serve to find the most probable explanation of the              
visual inputs rather than the full posterior distribution [1,3, but see 9, 12]. Here, we derive a                 
spiking neural network model using deterministic leaky integrate-and-fire (LIF) neurons and           
stochastic synapses whose responses represent binary samples from the joint posterior given a             
retinal input (Fig A, B). Simulating the model we find agreement with classic neurophysiological              
observations about V1 neurons, from approximately contrast-invariant tuning curves (Fig C) to            
near Poisson variability to small noise correlations with a mean of close to zero (Fig D) [6], to                  
negative causal influences between neurons of similar receptive fields (Fig E) [7]. Recently, it              
was also shown that responses from such a model also form a probabilistic population code               
over orientation [8]. Within the context of this model we can understand the underlying cause for                
each observation, e.g. why near contrast-invariant orientation tuning is ​not in contradiction to a              
sharpening posterior over orientation with increasing contrast, or that the main contribution to             
near-Poisson variability are stochastic synapses, not feedforward input noise or unreliable           
neurons – making empirically testable predictions. 
With our work we build on and extend prior results, key among them are the findings that                 
learning in binary linear Gaussian models yields V1-like RFs [2], a proposal how sampling in               
discrete time may be implemented by asynchronous spikes in continuous time [10], and the              
proposal that a synapse’s stochasticity may reflect Bayesian uncertainty about its correct value             
[4,13]. It complements work showing that networks of deterministic LIF neurons can sample             
from Boltzmann distributions with Poisson-like variability when in a high conductance regime [5].  
More generally, our work bridges Marr’s three levels [11], from assuming a computational goal              
(here, probabilistic inference over visual inputs) to an algorithm (neural sampling) to neural             
implementation (network of LIF neurons) (Fig A). 
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