A neural-sampling based model of early visual processing based on leaky
integrate-and-fire neurons

Olshausen & Field [1], and a series of studies building on it, have shown that V1 receptive fields
emerge from learning in a linear Gaussian model of natural images under a sparse sprior. How
V1 neurons might implement inference in such a system is less clear, and prior work has
typically assumed that network dynamics serve to find the most probable explanation of the
visual inputs rather than the full posterior distribution [1,3, but see 9, 12]. Here, we derive a
spiking neural network model using deterministic leaky integrate-and-fire (LIF) neurons and
stochastic synapses whose responses represent binary samples from the joint posterior given a
retinal input (Fig A, B). Simulating the model we find agreement with classic neurophysiological
observations about V1 neurons, from approximately contrast-invariant tuning curves (Fig C) to
near Poisson variability to small noise correlations with a mean of close to zero (Fig D) [6], to
negative causal influences between neurons of similar receptive fields (Fig E) [7]. Recently, it
was also shown that responses from such a model also form a probabilistic population code
over orientation [8]. Within the context of this model we can understand the underlying cause for
each observation, e.g. why near contrast-invariant orientation tuning is not in contradiction to a
sharpening posterior over orientation with increasing contrast, or that the main contribution to
near-Poisson variability are stochastic synapses, not feedforward input noise or unreliable
neurons — making empirically testable predictions.

With our work we build on and extend prior results, key among them are the findings that
learning in binary linear Gaussian models yields V1-like RFs [2], a proposal how sampling in
discrete time may be implemented by asynchronous spikes in continuous time [10], and the
proposal that a synapse’s stochasticity may reflect Bayesian uncertainty about its correct value
[4,13]. It complements work showing that networks of deterministic LIF neurons can sample
from Boltzmann distributions with Poisson-like variability when in a high conductance regime [5].
More generally, our work bridges Marr’s three levels [11], from assuming a computational goal
(here, probabilistic inference over visual inputs) to an algorithm (neural sampling) to neural
implementation (network of LIF neurons) (Fig A).
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