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Abstract

The Bayesian Brain hypothesis, according to which the brain implements statistically optimal algo-
rithms, is one of the leading theoretical frameworks in neuroscience. There are two distinct underlying
philosophies: one in which the brain recovers experimenter-defined structures in the world from sensory
neural activity (decoding), and another in which it represents latent quantities in an internal model (en-
coding). We argue that an implicit disagreement on this point underlies some of the debate surrounding
the neural implementation of statistical algorithms, in particular the difference between sampling-based
and parametric distributional codes. To demonstrate the complementary nature of the two approaches,
we have shown mathematically that encoding by sampling can be equivalently interpreted as decod-
ing task variables in a manner consistent with linear probabilistic population codes (PPCs), a popular
decoding approach. Awareness of these differences in perspective helps misunderstandings and false di-
chotomies, and future research will benefit from an explicit discussion of the relative advantages and
disadvantages of either approach to constructing models.

1 Introduction1

According to the Bayesian Brain hypothesis, one of the main operations of neural circuits is to carry out2

statistical computations by flexibly combining prior knowledge with new evidence and evaluating quantities3

of interest with respect to the entire posterior distribution. In the case of perception, prior knowledge is4

assumed either to come from experience with the world during development or to be encoded genetically5

having been learned over the course of generations. While any given sensory measurement may be noisy or6

ambiguous – providing a wide likelihood function in Bayesian terms – prior knowledge is deployed to resolve7

these ambiguities when possible (von Helmholtz, 1925). The Bayesian framework has been instrumental for8

our understanding of perception (Knill and Richards, 1996; Pouget et al., 2013).9

At the core of the Bayesian Brain hypothesis is the idea that neural activity corresponds to probability10

distributions rather than point estimates – such schemes are known as “distributional codes” (Zemel et al.,11

1998). Previous surveys of distributional codes have emphasized a distinction between sampling-based and12

parametric codes (Fiser et al., 2010; Pouget et al., 2013; Sanborn, 2015; Gershman and Beck, 2016). From13

a general theoretical standpoint, both sampling and parametric codes have advantages and disadvantages.14

In the context of neuroscience, sampling and parametric codes have also been compared with respect to the15

simplicity of implementing computations believed to be important for the brain, such as cue combination16

and marginalization (Fiser et al., 2010). Further, numerous studies have empirically tested for properties of17

sampling or parametric codes in neural responses. Sampling codes have been argued to explain spontaneous18

cortical activity (Berkes et al., 2011), neural variability (Hoyer and Hyvärinen, 2003), structure in noise19

correlations (Haefner et al., 2016; Bányai et al., 2019), onset transients and oscillations (Aitchison and20

Lengyel, 2016; Hennequin et al., 2018; Echeveste et al., 2019), and more (Orbán et al., 2016). Meanwhile,21

parametric codes have been cited in explanations of contrast-invariant tuning (Ma et al., 2006), near-linearity22

during cue-combination (Fetsch et al., 2011, 2013), evidence integration dynamics in parietal cortex (Beck23

et al., 2008; Hou et al., 2019), divisive normalization (Beck et al., 2011), and more (Pouget et al., 2013).24

Importantly, sampling and parametric codes have so far always been discussed and compared as competing25
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and mutually exclusive mathematical models of the same neural circuits, with no decisive evidence presented26

favoring one over the other model.27

Here, we describe how part of this debate can be resolved by considering that sampling and parametric28

codes, as they are usually discussed, reflect two distinct and complementary philosophies on how to con-29

struct models of inference in the brain. In particular, the primary goal of this paper is to clearly establish30

a distinction between what we call Bayesian Encoding and Bayesian Decoding perspectives on the31

Bayesian Brain hypothesis. These two perspectives constitute different ways of thinking about the kinds of32

inference problems faced by the brain and over what variables which inference is performed. Not making33

these differences explicit has led to confusion about how to interpret neural data. The distinction between34

an encoding and a decoding perspective has several components, an understanding of which we hope will35

clarify future research.36

We illustrate the complementary nature of these two philosophies using a toy model, previously presented37

at NeurIPS (Shivkumar et al., 2018). In this example, we construct a sampling-based encoding over a linear38

Gaussian image model (Olshausen and Field, 1996, 1997), and show analytically that firing rates in this39

model are equivalent to a Probabilistic Population Code (PPC) over arbitrary scalar stimuli in a task. There40

is thus no inherent contradiction in saying that the brain is both sampling (in the “Bayesian Encoding”41

sense) and a parametric code (in the “Bayesian Decoding” sense). We conclude with a discussion of other42

possible connections between sampling and parametric codes and distributional neural codes in general.43

2 Results44

Both Bayesian Encoding and Bayesian Decoding fall under the umbrella of distributional neural codes. This45

means that any given pattern of neural activity is interpreted not as representing a point estimate of some46

quantity, but as representing an entire probability distribution over it. The nature of this “quantity” is key47

to the distinction between both frameworks.48

2.1 Bayesian Encoding49

We define Bayesian Encoding as the view that there exists a probability distribution over some quantity50

of interest to the brain, and that the primary function of sensory neurons is to compute and represent an51

approximation to this distribution. We use the term “encoding” because the probability distribution that is52

represented conceptually precedes the actual neural responses. That is, in Bayesian encoding models, there53

exists a reference distribution that is defined independently of how neurons actually respond, and which is54

approximately encoded by neural responses.55

The Bayesian Encoding perspective requires a probabilistic model that defines the reference distribution.56

In the context of the sensory system, this model often takes the form of an internal generative model of57

sensory inputs (Figure 1a). With this perspective, the long-term goal of sensory areas of the brain is to58

develop a statistical model of its sensory inputs. Sensory data, such as an image on the retina, are explained59

as the result of higher order causes. Whereas an image on the retina is high-dimensional and complex, latent60

variables tell their story: objects, lights, textures, and optics interacted to create each image. A generative61

model makes this process explicit by assigning prior probabilities to the (co)occurrence of latent variables and62

by quantifying the likelihood of generating a particular sensory observation from a particular configuration63

of latent variables. The encoded distribution in this framework is defined over the variables in this statistical64

model.65

For latent variables x and sensory input I, optimal inference means computing the posterior distribution,66

pb(x|I) =
pb(I|x)pb(x)

pb(I)
. (1)

We use the subscript b in pb(x, I) to refer to quantities in the brain’s internal model to distinguish them67

from other types of probabilities such as a decoder’s uncertainty. The Bayesian Encoding perspective poses68

the question of how neural circuits could compute and represent the posterior distribution pb(x|I) for any69

sensory I, given the internal model that the brain has learned (Figure 1b). In general, exact inference70

is an intractable problem (Murphy, 2012; Wainwright and Jordan, 2008; Bishop, 2006), leading to the71
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Figure 1: Visualization of Bayesian Encoding. a) A common assumption of Bayesian Encoding is that
the brain constructs an internal model of the world, and that perceptual inferences are about quantities
in the internal model, as opposed to being about external quantities in the world per se. This diagram
emphasizes this distinction between the world and an internal model. Whether or not stimuli come from
natural experience or from an artificial task, the brain computes a posterior over internal variables, pb(x|I),
in all cases. b-e) The defining feature of Bayesian Encoding is the existence of a “true” distribution (b),
often the posterior over a latent variable, x, given a sensory measurement, I. One then typically assumes an
approximation scheme such as variational inference (b→c) or sampling (b→d), and that this approximation
is then realized in patterns of neural activity (e).

question of how the brain could compute and represent an approximation to the true posterior (Figure 1c-e).72

This line of reasoning motivates work on “neurally plausible approximate inference algorithms,” including73

approaches with connections to sampling-based inference (Figure 1d), as well as approaches inspired by74

variational inference techniques (Figure 1c) (reviewed in Fiser et al. (2010); Sanborn (2015); Gershman and75

Beck (2016)).76

2.2 Bayesian Decoding77

We define Bayesian Decoding as the perspective in which neural activity is treated as given, and emphasis78

is placed on the statistical uncertainty of a decoder observing those neural responses. Bayesian Decoding is79

closely related to ideal observer models in psychophysics involving tasks that require the estimation of scalar80

aspects of a presented stimulus (e.g. its orientation or its contrast) or a decision whether the stimulus belongs81

to one of two or more discrete classes (e.g. “left” or “right”). Of course, any stimulus s that elicits neural82

responses r is optimally decoded by computing p(s|r). In general, this decoder may be complex or sensitive83

to context or other “nuisance variables.” The key question within the Bayesian Decoding framework is this:84

what conditions must the stimulus-driven neural activity (p(r|s)) fulfill such that the decoder (p(s|r)) is both85

simple (e.g. linear) and invariant to changes in context? For instance, linearity and invariance constraints86

on the decoder imply constraints on tuning curves and the distribution of neural noise (Zemel et al., 1998;87

Ma et al., 2006).88

There is little practical difference between this definition of Bayesian Decoding and familiar notions of89

optimal neural decoding, except in one’s philosophical stance towards inference in the brain, and hence90

in the kinds of problems and tools that are emphasized. Classically, decoding is either a tool for assessing91

information content in neural responses or a mechanistic model of how they impact behavior. In the Bayesian92

setting, one might further invoke the language of ideal observers and priors. However, contrasting Bayesian93

versus classical decoding is not pertinent to our main argument; we are instead interested in the distinction94

of both with Bayesian Encoding.95
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Figure 2: Visualization of Bayesian Decoding. a) Decoding is fundamentally a problem of estimating external
quantities from internal (neural) representations. This diagram emphasizes the symmetry between stimuli
that exist in the world, and quantities estimated or inferred in the brain. Here, a scalar stimulus, s, elicits
neural responses, vr, mediated by an image, I. The decoding question is how the brain forms an internal
estimate, ŝ, from r. b) The decoding problem usually begins with a stimulus, such as the direction of
motion of dots viewed through an aperture. c-e) Given a population of neurons’ tuning curves to s (c) and
an observation of spikes on a single trial (d), an optimal decoder computes p(s|r) (e). A PPC is a decoder
with two convenient properties: it is an exponential family with natural parameters linearly related to r,
and the decoder is invariant to irrelevant nuisance variables if they only scale the tuning curves.

Probabilistic Population Codes (PPCs), as introduced by Ma et al (2006), exemplify the Bayesian De-96

coding approach. PPCs imply one way to construct a Bayesian decoder that is both simple and invariant97

to nuisance: if a population of neurons tuned to s have “Poisson-like” variability, then the optimal decoder98

is part of the exponential family with firing rates as natural parameters. This is a particularly “convenient”99

representation for taking products of two distributions (Ma et al., 2006; Beck et al., 2008). Perhaps even100

more important is the notion of invariance afforded by a PPC: as long as nuisance variables such as image101

contrast or dot coherence only multiplicatively scale tuning curves, the decoder can ignore them.102

Importantly, linearity for cue combination and multiplicative gain by nuisance variables are what con-103

stitute the predictions of PPCs. In classical decoding approaches, neural responses are simply “given,” not104

prescribed by a theory. In the Bayesian Decoding framework generally, and in the case of PPCs in particular,105

imposing constraints on the decoder constrain the possible set of evoked response distributions, p(r|s). These106

constraints are then formulated as predictions and tested empirically (Fetsch et al., 2011, 2013; Pouget et al.,107

2013; Hou et al., 2019).108

2.3 Contrasting Bayesian Encoding and Bayesian Decoding109

There are three key differences between the Bayesian Encoding and Bayesian Decoding perspectives involving110

(1) what they assume the brain is inferring, (2) implicit notions of causality, and (3) the empirical data and111

other arguments used to motivate them. As our goal is to summarize and categorize a large and diverse112

sub-field, there will be exceptions to each rule, but we expect these distinctions to be useful for framing113

further discussions.114

2.3.1 Differences in what is assumed to be inferred115

An integral part of the Bayesian Encoding framework is the existence of an abstract internal model that is116

defined independently of how neurons actually respond. The model is independent of neurons in the sense117
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Figure 3: Side-by-side comparison of Bayesian Encoding and Bayesian Decoding. In both frameworks, it
is understood that there exists a mechanistic connection between stimuli (I), sensory neural responses (r),
and behavior. In the Bayesian Decoding framework, emphasis is placed on the uncertainty of a decoder
estimating a (usually scalar) stimulus parameter s from r (green arrow). Bayesian Encoding posits the
existence of an internal model with latent variables x, and that neural responses (r) encode the computation
of a posterior distribution (pb(x|I)). The blue arrow from pb(x|I) to r is an instance of downward causation,
since changes to the posterior imply changes to neural responses. In Bayesian Decoding, the “likelihood”
refers to p(r|s), and the inference problem is to recover s from r. In Bayesian Encoding, the “likelihood”
refers to the internal model’s pb(I|x), and the inference problem is to recover x from I and to embed the
posterior over x in r.

that the same model could in principle be implemented in silico or in the brains of other individuals or other118

species. Translating from inference in an internal model into predictions for neural data usually requires119

an additional linking hypothesis on the nature of distributional codes, such as whether neurons sample or120

encode variational parameters, and how either samples or parameters correspond to observable biophysical121

quantities like membrane potentials, spike times or spike counts.122

The brain’s internal model is typically assumed to have been calibrated through exposure to natural123

stimuli (Berkes et al., 2011) and to only change slowly with extensive exposure to new stimuli. For this124

reason, the generative model in Bayesian Encoding models is often assumed to be task-independent; what125

the brain infers is assumed to not be under the control of an experimenter. One exception to this rule is a126

family of models in which the prior over internal variables changes through extensive exposure to stimuli in127

a particular task (Haefner et al., 2016; Lange and Haefner, 2020).128

In contrast, the Bayesian Decoding view usually deals directly with estimation of task-relevant variables.129

For instance, in an motion discrimination task, a Bayesian Decoding question would be how the brain130

represents uncertainty over directions of motion. Importantly, answering this question does not require a131

generative model of possible motion stimuli; it requires only a statistical model of the relation between132

scalar motion direction (and possibly nuisance variables like coherence) and neural responses, i.e. p(r|s).133

The difference between these perspectives is illustrated in Figure 3.134

2.3.2 Differing notions of “likelihood”135

Another major difference is evidenced by divergent usage of the term “likelihood” (Figure 3). In Bayesian136

Encoding, the term “likelihood” is reserved for the abstract relationship between internal model variables137

and sensory data. For instance, one could speak of the “likelihood that this configuration of variables138

in the brain’s model generated the observed image,” or pb(I|x). This usage supports the idea that the139

quantity being computed is a posterior over internal variables. In Bayesian Decoding, on the other hand,140

the “likelihood” refers to a relationship between stimuli and neural responses, p(r|s). This usage supports141

the idea that the quantity of interest is the posterior over external stimuli.142
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2.3.3 Differing Empirical and Theoretical Motivations143

Finally, distinguishing Bayesian Encoding and Bayesian Decoding allows one to be more precise on what144

data and what normative arguments motivate different theories. Bayesian Decoding can be motivated by145

the fact that humans and other species are empirically sensitive to uncertainty and prior experience, as146

in the classic psychophysics results on multi-modal cue combination (Ernst and Banks, 2002; Knill and147

Pouget, 2004; Alais and Burr, 2004; Körding, 2007; Pouget et al., 2013). The vast literature on optimal or148

near-optimal Bayesian perception in controlled tasks motivates the question of how neural circuits facilitate149

Bayesian computations with respect to stimuli in a task. Bayesian Decoding is further motivated by neural150

data which show a correspondence between neural noise, behavioral indications of uncertainty, and decoding151

weights in a psychophysics task (Fetsch et al., 2013; Hou et al., 2019; Walker et al., 2019). Importantly, none152

of these results constitute direct evidence for inference with respect to an internal model, as hypothesized in153

Bayesian Encoding theories.154

There are three motivations for Bayesian Encoding which are independent of the above motivations155

for Bayesian Decoding. First, there is a constraint on all well-calibrated statistical models that the prior156

must equal the average posterior (Dayan and Abbott, 2001). There is some empirical evidence that this157

constraint is satisfied by neural responses in visual cortex (Berkes et al., 2011; Lange and Haefner, 2020).158

Second, one can test for signatures of particular inference algorithms and particular internal models trained159

on natural stimuli. This approach has been employed by a series of sampling-based inference models and has160

successfully reproduced a wide range of neural response properties in early visual cortex (Orbán et al., 2016;161

Aitchison and Lengyel, 2016; Echeveste et al., 2019). Third, Bayesian Encoding is often motivated by purely162

normative arguments. Any rational agent that faces uncertainty ought to compute posterior distributions163

over unobserved variables (Jaynes, 2003). However, we emphasize again that existing evidence for near-164

optimality in psychophysical tasks only constitutes weak evidence in favor of inference with respect to a165

task-independent internal model of the sort usually studied in the Bayesian Encoding literature.166

While the Encoding and the Decoding perspectives are complementary, it is important to make this167

distinction explicit. Failure to do so can lead to confusion and apparently conflicting results on the nature168

of the neural code. To illustrate this point, we next construct a model that encodes the posterior over169

internal variables by sampling and show analytically that it can be exactly decoded in a manner consistent170

with PPCs. An earlier version of the following section has appeared previously as NeurIPS conference171

proceedings (Shivkumar et al., 2018).172

2.4 Decoding Samples from a Linear Gaussian Model is Equivalent to a PPC173

An earlier version of this example originally appeared in the 2018 NeurIPS conference proceedings (Shivkumar174

et al., 2018). At a high level, our example proceeds as follows: we begin with a linear Gaussian internal175

generative model and we assume that neurons in V1 approximately infer a posterior distribution over image176

features. Inference consists of stochastic samples encoded by spiking responses over time. Next, we expose177

this system to stimuli from a task, such as oriented gratings. We then analytically derive the optimal decoder178

of task stimuli (e.g. grating orientation) from neural responses, and find that it is a linear PPC. We discuss179

a variety of implications, including the connection between neural variability and uncertainty and the role180

of nuisance variables in this system.181

2.4.1 Encoding: Neural Sampling in a Linear Gaussian Model182

We follow previous work in assuming that neurons in primary visual cortex (V1) implement probabilistic183

inference in a linear Gaussian model of the input image (Olshausen and Field, 1996, 1997; Hoyer and184

Hyvärinen, 2003; Bornschein et al., 2013; Haefner et al., 2016):185

I ∼ N (Ax,Σx) (2)

where Σx is the covariance of pixel noise in the brain’s generative model. The observed image, I, is assumed186

to be drawn from a Normal distribution whose mean is a linear combination of “projective fields” (PFi);187

the matrix A is a feature dictionary with projective fields as its columns: A = (PF1, . . . ,PFn). Each of188

the n projective fields is weighted by a single latent variable, x = (x1, . . . , xn)>, which will later each be189
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Figure 4: Encoding by sampling followed by decoding of orientation from the samples. Our model performs
sampling-based inference over x in a probabilistic model of the image, I. In a given experiment, the image
is generated according to the experimenter’s model that turns a scalar stimulus s, e.g. orientation, into an
image observed by the brain. The samples drawn from the model are then probabilistically ”decoded” in
order to infer the implied probability distribution over s from the brain’s perspective. While the samples
shown here are binary, our derivation of the PPC is agnostic to whether they are binary or continuous, or
to the nature of the brain’s prior over x.

associated with a single neuron. The main empirical justification for this model consists in the fact that190

under the assumption of a sparse independent prior over the x, the model learns projective field parameters191

that resemble the localized, oriented, and bandpass features that characterize V1 neurons when trained on192

natural images (Olshausen and Field, 1996; Bornschein et al., 2013). Hoyer & Hyvarinen (2003) proposed193

that during inference neural responses can be interpreted as samples in such a model. Furthermore, Orban194

et al. (2016) showed that samples from a closely related generative model (Gaussian scale mixture model,195

(Schwartz and Simoncelli, 2001)) could explain many response properties of V1 neurons beyond receptive196

fields. Since our main points are conceptual in nature, we will develop them for the slightly simpler original197

model described above.198

Given an image, I, we assume that neural responses correspond to samples from the posterior distribution,199

x(t) ∼ pb(x|I) ∝ pb(I|x)pb(x) where pb(x) is the brain’s prior over x. The exact form of pb(x) will not200

matter for the subsequent decoding arguments. We assume that spikes from a population of n neurons201

encode instantaneous values of samples from the posterior over x, so that each instant, the population202

response, x(t) = (x
(t)
1 , . . . , x

(t)
n )>, represents a sample from the brain’s posterior belief about x|I. Each203

sample of xi represents the brain’ instantaneous belief about the intensity of the feature PFi in the image.204

This interpretation is independent of any task demands or assumptions by the experimenter; as discussed205

above, x→ I is the brain’s internal model. In the next section we will show how these samples can also be206

interpreted as a population code over some experimenter-defined quantity like orientation.207

2.4.2 Decoding: Inferring Task Stimuli from Samples Results in a PPC208

In many classic neurophysiology experiments, an experimenter presents stimuli that only vary along a scalar209

dimension, such as the orientation of a grating or direction of dot motion (Parker and Newsome, 1998).210

We call this scalar quantity of interest “s.” We then pose the following decoding question: assuming V1211

implements sampling-based inference as defined in the previous section, what can downstream areas infer212

about s by observing the sequence of samples produced by V1? An ideal observer would apply Bayes’ rule213

to infer p(s|x(1), . . . ,x(t)) ∝ p(x(1), . . . ,x(t)|s)p(s) using knowledge of the likelihood of generating that set of214

samples for each s. In the linear Gaussian image model, the optimal decoder can be computed analytically,215

which we do next.216

We assume the image that is observed by the brain’s sensory periphery (e.g. retinal ganglion cells) is217

defined by a template function T(s) plus noise. This template function could, for instance, represent a218

grating of a particular spatial frequency and contrast, or any other shape that is being varied along s in the219

course of the experiment (Figure 4). We further allow for Gaussian pixel noise around the template T(s)220

with covariance Σe−b, which accounts for both (e)xternal pixel noise and noise internal to the (b)rain. This221
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means the likelihood that the brain observes the image I conditioned on s is222

p(I|s) = N (I; T(s),Σe−b) , (3)

where N (x;µ,Σ) denotes the probability density of a multivariate normal distribution with mean µ and223

variance Σ evaluated at x.224

With these assumptions, we are able to analytically derive the optimal decoder of s conditioned on a225

sequence of t independent samples from the posterior, {x(1), . . . ,x(t)}. By Bayes’ rule, the optimal decoder226

of s is simply the product of the prior p(s) with the likelihood of generating those t samples conditioned on227

s. This likelihood term is228

p(x(1), . . . ,x(t)|s) ∝ N
(

T(s); Ax̄t,Σe−b +
1

t
Σx

)∫
κ
(
x(1), . . . ,x(t)

)
pb(I)t

N (I;µI,ΣI) dI , (4)

where x̄t = 1
t

∑t
i=1 x(i) is the average of all samples up to time t. A full derivation along, with the exact229

form of κ, µI, and ΣI can be found in section S.1 or in Shivkumar et al. (2018). Importantly, as t gets large,230

µI goes to Ax̄t, which means that none of the terms in the integral depend on s. In the limit of large t,231

then, the full decoder of s is given by the much simpler expression,232

lim
t→∞

p(s|x(1), . . . ,x(t)) ∝ p(s)N (T(s); Ax̄,Σe−b) . (5)

Writing this expression in the canonical form for the exponential family gives233

lim
t→∞

p(s|x(1), . . . ,x(t)) ∝ g(s) exp(h(s)>x̄) where (6)

g(s) = exp

(
−1

2
T(s)>Σ−1e−bT(s)

)
p(s) and (7)

h(s) = T(s)>Σ−1e−bA . (8)

If samples of x are encoded by instantaneous neural responses, then firing rates r are proportional to x̄. We234

can then conclude that, in the limit of large t, this model is equivalent to a linear PPC over s as defined by235

Ma et al. (2006).236

2.4.3 Simulations237

We simulated this model system estimating the orientation of a grating image, where the generative model238

consisted of a mixture of uniformly spaced oriented Gabor patches in the columns of A. Figure 5 shows a239

numerical simulation of decoded posteriors over s for different numbers of samples, using the large–t decoder240

of equations (6)-(8), to illustrate how drawing additional samples results in a sharper decoded posterior over241

s. When only a small number of samples of x are drawn, the decoded distributions over s are both wide242

and variable, but get sharper and less variable as the number of samples increases (Figure 5a-c), The black243

distribution shown in Figure 5d is both the optimal decoder of s in the limit of many samples as well as a244

PPC over orientation. The bottom row of Figure 5 shows the corresponding spike counts for each neurons245

on the y−axis sorted by the preferred stimulus of each neuron on the x−axis.246

2.4.4 The Decoded PPC is Task-Dependent247

The relationships that we have derived for g(s) and h(s) (equations (7) and (8))provide insights into the248

nature of the PPC that arises in a linear Gaussian model of the inputs. A classic stimulus to consider when249

probing and modeling neurons in area V1 is an oriented grating. If the images are identical up to rotation,250

and if the prior distribution over orientations is flat, then g(s) will be constant. Equation (7) shows how g(s)251

changes as either of those conditions does not apply, for instance when considering stimuli that vary along252

spatial frequency or binocular disparity, rather than orientation, for which the prior significantly deviates253

from constant. Further, we can read from equation (8) exactly how the kernels h(s), which characterize254

how each neuron contributes to the population code over s, depend both on the manifold of images defined255

by T(s), and on the projective fields contained in the columns of A. For an intuition, consider the case of256
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Figure 5: Visualization of the convergence of the decoder after more and more samples. a-c) Decoded
posterior over s implied by equation (5) for 1, 10, and 100 samples, respectively. Colored lines are individual
sampling runs. Black line is the average posterior over many runs. d) Decoded posterior over s after 5k
samples in black, and with the mean x̄ estimated by Variational Bayes in orange. e-h) Population responses
corresponding to each panel in (a-d) (note different scales from left to right). The three highlighted runs
were selected for visualization post-hoc to ensure the first sample contained only a single spike (e), but this
is not true in general for all runs.

isotropic pixel noise, that is Σe−b = σ2
e−bI, in which case h(s) is simply the dot product between T(s) and257

PFi for each neuron, scaled by 1/σ2
e−b. The more T(s)>PFi depends on s, the more informative neuron i’s258

response is for the posterior over s.259

Importantly, the PPC depends as much on the manifold of images defined for a particular experiment,260

T(s), as it does on the projective fields of the neurons, A. The kernels h(s) will be different for gratings261

of different size and spatial frequency, for plaids, or for a house. This is what we mean when we say the262

code over s is task-dependent : T(s) is largely arbitrary and up to the experimenter. This means that a263

downstream area forming an estimate of s, or an area that is combining the information contained in the264

neural responses x with that contained in another population (e.g. in the context of cue integration) will265

need to learn the h(s) separately for each task.266

2.4.5 Simultaneous Log- and Direct-Probability Codes267

One way that questions about the nature of Bayesian inference in the brain has been posed is by considering268

a distinction between Log Probability Codes and Linear or Direct Probability Codes (Barlow, 1969; Pouget269

et al., 2013). Taking the log of equation (6) reveals that the neural responses in our model are linearly related270

to the logarithm of the posterior over s. By construction, neural responses in our simple model correspond271

to samples, i.e. neither probabilities nor log probabilities over x. It is worth noting, however, that samples272

are proportional to probabilities in the special case where all latent variables are binary. In that case, on the273

time scale of a single sample, the response is either 0 or 1, making the firing rate of neuron i proportional274

to its marginal probability, pb(xi|I). Such a binary image model has been shown to be as successful as the275

original continuous model of Olshausen & Field (1996) in explaining the properties of V1 receptive fields276

(Henniges et al., 2010; Bornschein et al., 2013), and is supported by studies on plausible implementations of277

sampling in spiking neurons (Buesing et al., 2011; Pecevski et al., 2011). This implies that for the special278

case of binary latents, our neural sampling model is simultaneously a direct probability code (over xi), and279

a log probability code (over s).280
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2.4.6 Dissociating Neural Variability and Uncertainty281

It is important to appreciate the difference between the brain’s posteriors over x, and over s. The former282

represents a belief about an internal variable such as the intensity or absence/presence of individual image283

elements in the input. The latter represents knowledge about an external stimulus that caused the input284

given the neural responses. Neural variability, as modeled here, corresponds to variability in the samples285

x(i) and is directly related to the uncertainty in the posterior over x. The uncertainty over s encoded by the286

PPC, on the other hand, depends on the samples only through their mean, rather than their variance. Given287

sufficiently many samples, the uncertainty over s is only determined by the noise in the channel between288

experimenter and brain (Σe−b). This is is a sobering point for experiments that seek to determine whether289

the brain is sampling by testing the relationship between neural variability and “uncertainty” in broad terms:290

in our example model, only uncertainty over x but not over s manifests as neural variability, while s is the291

thing most commonly and naturally manipulated in an experiment.292

3 Discussion293

Although it is widely agreed that a primary function of sensory neural circuits is to infer something, it is294

not generally agreed what they infer. According to the Bayesian Decoding perspective, neurons represent295

distributions over external quantities such as stimuli in a task. According to the Bayesian Encoding per-296

spective, neurons represent distributions over variables in an internal model which exists independently of a297

task. These are complementary perspectives, and the same system might be interpreted as a fundamentally298

different type of distributional code (sampling or a PPC) depending on what variables we assume the system299

represents (linear Gaussian features or task stimuli). The question of how the brain implements approximate300

inference is inextricable from the question of what it infers.301

Historically, sampling-based neural models have taken the Bayesian Encoding approach, asking how neu-302

rons could sample from the posterior distribution over variables in an internal model, while PPCs have303

primarily been associated with Bayesian Decoding. However, this does not reflect any fundamental distinc-304

tion between the two types of distributional codes. Parametric codes can and have been applied to Bayesian305

Encoding problems, including both PPCs and other types of parametric codes such as distributed distribu-306

tional codes (DDCs) (Vertes and Sahani, 2018). Finally, one could consider cognitive sampling models as a307

kind of sampling-based decoding, which have been used to explain a wide variety of perceptual and cognitive308

phenomena from multi-stable perception (Gershman et al., 2012) to anchoring and availability biases (Lieder309

et al., 2013, 2017). Table 1 provides a list of examples in each of the four categories defined by the sampling310

versus parametric and the encoding versus decoding axes.311

Although Bayesian Decoding is not a trivial problem, it is a weaker form of the Bayesian Brain hypothesis312

than Bayesian Encoding. One might call Bayesian Decoding the Weak Bayesian Brain Hypothesis, because313

it is more descriptive than prescriptive. That is, it describes properties that a neural code ought to have in314

order to make the job of downstream circuits “easy,” and it is relatively tractable to ask whether populations315

of neurons have those properties – the challenge is to construct r|s to realize these properties (Zemel et al.,316

1998; Ma et al., 2006). Bayesian Encoding, on the other hand, might be called the Strong Bayesian Brain317

Hypothesis, because it requires committing to the potentially much harder to falsify idea that the brain318

contains an internal generative model of its sensory inputs so that the posterior pb(x|I) is unambiguously319

defined.320

In section 2.3.3, we argued that Bayesian Encoding and Bayesian Decoding have largely disjoint empirical321

and theoretical support. Bayesian Decoding can motivated by the substantial psychophysics literature on322

near-optimal perception in the face of ambiguity (Knill and Richards, 1996). However, it would be a mistake323

to treat evidence for near-optimal or near-Bayesian behavior in a particular task alone as evidence that324

the brain represents probability distributions over variables in an internal model. One could imagine, for325

instance, extending our example above to the case where the image features, x, are not represented by326

samples from their posterior, but by their MAP or mean posterior value. This would be a point estimate327

over internal variables and thus antithetical to the idea of Bayesian Encoding, but would nonetheless facilitate328

many forms of Bayesian Decoding; in fact, neurons encoding only the mean or MAP of x in our model would329

directly form a linear PPC over s! If point estimates of internal model variables are sufficient for Bayesian330

Decoding of task quantities, then Bayesian Encoding requires additional justification outside the usually-331
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Encoding Decoding

Sampling

Hoyer and Hyvärinen (2003)
Berkes et al. (2011)
Buesing et al. (2011)
Orbán et al. (2016)

Haefner et al. (2016)
Aitchison and Lengyel (2016)

Savin and Denève (2014)*

Lieder et al. (2013)
Vul et al. (2014)

Gershman et al. (2012)
Sanborn and Chater (2016)

Lieder et al. (2017)

Parametric

Friston (2005)
Beck et al. (2012)

Raju and Pitkow (2016)
Vertes and Sahani (2018)

Zemel et al. (1998) ?
Sahani and Dayan (2003) ?

Tajima et al. (2016)?
Savin and Denève (2014)*

Ma et al. (2006)
Beck et al. (2008)
Beck et al. (2011)
Hou et al. (2019)

Zemel et al. (1998) ?
Sahani and Dayan (2003) ?

Tajima et al. (2016)?

Table 1: Dividing previous work along the lines of sampling versus parametric codes and encoding versus
decoding. The fact that there is previous work in all four quadrants emphasizes that these are complementary
distinctions. We marked three papers with “?” that are exceptions to the hard division between encoding
and decoding. Savin and Denève (2014), marked with “*”, can similarly be seen as an exception to the hard
division between sampling-based and parametric encodings.

cited empirical psychophysics literature. The distinction between Bayesian Encoding and Bayesian Decoding332

might productively add to the open philosophical question: “if perception is probabilistic, why does it not333

seem probabilistic” (Block, 2018; Rahnev et al., 2020).334

An important question for all Bayesian Encoding models is the extent to which they depend on assump-335

tions about the brain’s internal model or inference algorithm. As an example, Berkes et al (2011) compared336

the average stimulus-evoked neural activity in visual cortex to spontaneous activity, finding that they be-337

come more aligned over the course of development. This is argued to be evidence that the brain develops338

an internal statistical model of its sensory inputs in broad terms, since all well-calibrated statistical models339

have the property that the prior is equal to the average posterior (Dayan and Abbott, 2001). However, this340

link requires making crucial assumptions about the nature of the brain’s internal model and its distribu-341

tional code. First, Berkes et al assume that neural activity encoding the prior can be directly measured342

by recording spontaneous neural activity, i.e. by recording visual cortex in the dark. This assumption is343

motivated by the observation that the posterior in scale-mixture models reverts to the prior when contrast344

is zero, but is in general not true of other types of image models. As an alternative approach to assuming a345

particular type of internal model, one might instead assert that an internal model exists while also conceding346

that it is unknown to us as experimenters. This is the approach taken by Lange & Haefner (2020), who347

derived predictions for sensory neural activity from the same principle of learning a well-calibrated model,348

but without assuming that the brain’s prior can be directly measured.349

The key step in our example system above which allowed us to interpret samples of x as a PPC was350

to construct the PPC over a different variable – s. Still, the distinction between sampling and parametric351

codes may also be a false dichotomy even when considering a single quantity to be inferred. That is, the352

question of whether the brain samples or implements variational inference over its internal x may also lead353

to a false dichotomy. In principle, it is possible to interpret each sample as implying an entire distribution,354

and it is possible to improve variational inference by adding stochasticity to the parameters (Hoffman et al.,355

2013). Current proposals for how the brain could implement probabilistic inference are limited by inference356

algorithms known from statistics and machine learning, which also tend to divide cleanly into “sampling” or357

“variational” methods, but rarely both. One way to advance theories of neural inference, then, may be to358

develop statistical algorithms that trade-off the advantages and drawbacks of both sampling and variational359

inference (de Freitas et al., 2001; Gershman et al., 2012; Salimans et al., 2015).360
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Latent Variable Analysis and Signal Separation, pages 450–457, 2010.418

Matthew D. Hoffman, David M. Blei, Chong Wang, and John Paisley. Stochastic variational inference.419

Journal of Machine Learning Research, 14:1303–1347, 2013.420

Han Hou, Qihao Zheng, Yuchen Zhao, Alexandre Pouget, and Yong Gu. Neural Correlates of Optimal421

Multisensory Decision Making under Time-Varying Reliabilities with an Invariant Linear Probabilistic422

Population Code. Neuron, 104:1–12, 2019.423

Patrik O. Hoyer and Aapo Hyvärinen. Interpreting neural response variability as monte carlo sampling of424

the posterior. Advances in Neural Information Processing Systems, 17(1):293–300, 2003.425

E. T. Jaynes. Probability Theory: The Logic of Science. Cambridge University Press, New York, 2003.426

David C. Knill and Alexandre Pouget. The Bayesian brain: the role of uncertainty in neural coding and427

computation. Trends in Neurosciences, 27(12):712–9, dec 2004.428

David C. Knill and Whitman Richards, editors. Perception as Bayesian Inference. Cambridge University429

Press, New York, NY, 1996.430

Konrad P Körding. Decision Theory: What ”Should” the Nervous System Do? Science Review, 318, 2007.431

Richard D. Lange and Ralf M. Haefner. Task-induced neural covariability as a signature of approximate432

Bayesian learning and inference. bioRxiv, 2020.433

Falk Lieder, Thomas L. Griffiths, and Noah D. Goodman. Burn-in , bias , and the rationality of anchoring.434

Advances in Neural Information Processing Systems, 25:1–9, 2013.435

Falk Lieder, Thomas L. Griffiths, Quentin J M Huys, and Noah D. Goodman. Empirical Evidence for436

Resource-Rational Anchoring and Adjustment. Psychonomic Bulletin & Review, 2017.437

Wei Ji Ma, Jeffrey M. Beck, Peter E. Latham, and Alexandre Pouget. Bayesian inference with probabilistic438

population codes. Nature Neuroscience, 9(11):1432–1438, 2006.439

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, Cambridge, MA, 2012.440

Bruno A. Olshausen and David J. Field. Emergence of simple-cell receptive field properties by learning a441

sparse code for natural images, 1996.442

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 15, 2020. ; https://doi.org/10.1101/2020.10.14.339770doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.14.339770
http://creativecommons.org/licenses/by/4.0/


Bruno a Olshausen and David J. Field. Sparse coding with an incomplete basis set: a strategy employed by443

V1?, 1997.444
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S Supplemental Text484

S.1 Derivation of the optimal decoder from samples485

Here we derive a slightly more general result than is stated in the main text by considering arbitrary486

covariance matrices: we consider here the case where I is distributed with mean T(s) and covariance Σe−b,487

and the brain’s internal model generates images with mean Ax and covariance Σx. The probability of488

drawing a single neural sample, x(i), given an observed image is, by assumption, equal to the posterior489

probability of x in the brain’s internal model. The probability of drawing a sequence of t independent490

samples of x is,1491

p(x(1), . . . ,x(t)|I) =
t∏

i=1

p(x(i)|I)

=
t∏

i=1

pb(I|x(i))pb(x(i))

pb(I)

=
1

pb(I)t

t∏
i=1

pb(I|x(i))pb(x(i)) .

Our results primarily follow from this identity for the product of two multivariate normal distributions:

N (y;µ1,Σ1)N (y;µ2,Σ2) = N (y;µ3,Σ3)N (µ1;µ2,Σ1 + Σ2) (S1)

Σ3 =
(
Σ−11 + Σ−12

)−1
µ3 = Σ3

(
Σ−11 µ1 + Σ−12 µ2

)
Letting x̄t′ = 1

t′

∑t′

i=1 x(i) denote the running mean of the samples up to t′, it follows from the above product492

identity that493

t∏
i=1

N
(
I; Ax(i),Σx

)
︸ ︷︷ ︸

pb(I|x(i))

= N
(

I; Ax̄t,
1

t
Σx

) t∏
t′=2

N (Ax(t′); Ax̄t′−1,
t′

t′ − 1
Σx) . (S2)

We next absorb all terms that do not depend on s or I into κ(x(1), . . . ,x(t)). Specifically, let

κ(x(1), . . . ,x(t)) =
t∏

i=1

pb(x(i))
t∏

t′=2

N (Ax(t′); Ax̄t′−1,
t′

t′ − 1
Σx) .

After simplifying further, this can be written in terms of a ratio of Gaussian densities with mean zero, times
the product of priors on each x:

κ(x(1), . . . ,x(t)) =

∏t
i=1N (Ax(i); 0,Σx)pb(x(i))

N (Ax̄t; 0,
1
t Σx)

.

Then, the likelihood of drawing a particular set of t independent samples of x conditioned on I is494

p(x(1), . . . ,x(t)|I) ∝
κ
(
x(1), . . . ,x(t)

)
pb(I)t

N
(

I; Ax̄t,
1

t
Σx

)
. (S3)

.495

Since a decoder looking only at samples of x has no direct access to the image, the likelihood for a496

full sequence of samples conditioned on s requires marginalizing over all possible images I that could be497

generated conditioned on a fixed s:498

p(x(1), . . . ,x(t)|s) =

∫
p(x(1), . . . ,x(t)|I)p(I|s)dI .

1We write p(x(1), . . . ,x(t)|I) rather than pb(x
(1), . . . ,x(t)|I) because while x is part of the brain’s internal model, the samples

of x are not, but are viewed through the lens of an outside observer or optimal decoder.
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Substituting in (S3), this is499

p(x(1), . . . ,x(t)|s) =

∫
κ
(
x(1), . . . ,x(t)

)
pb(I)t

N
(

I; Ax̄,
1

t
Σx

)
p(I|s)dI .

Next, making use of the assumption that I|s is a multivariate normal centered on T(s) with pixel covariance500

Σe−b and applying the multivariate normal product identity (S1), it follows that501

p(x(1), . . . ,x(t)|s) =

∫
κ
(
x(1), . . . ,x(t)

)
pb(I)t

N
(

I; Ax̄t,
1

t
Σx

)
N (I; T(s),Σe−b)dI

= N
(

T(s); Ax̄t,Σe−b +
1

t
Σx

)∫
κ
(
x(1), . . . ,x(t)

)
pb(I)t

N (I;µI,ΣI) dI , (4 restated)

where502

ΣI =
(
tΣ−1x + Σ−1e−b

)−1
µI = ΣI

(
Σ−1e−bT(s) + tΣ−1x Ax̄t

)
.

As we will show below, the first term in (4), N (T(s); Ax̄t, . . .), implies that the decoder is a linear PPC.503

The integral in (4) requires further discussion. First, note that as the number of samples, t, increases, ΣI504

shrinks towards zero, and µI goes to Ax̄t, which implies that N (I;µI,ΣI) goes to a delta distribution around505

Ax̄. This implies that for large t, the integral ceases to depend on s, and hence can be ignored by a decoder.506

Thus, for large t, we have507

p(x(1), . . . ,x(t)|s) ∝ N (T(s); Ax̄t,Σe−b) , (S4)

where the proportionality should be understood in the context of decoding s, and is only approximate for508

finite t. Note that when t is small, it may still be the case that the integral in (4) does not depend strongly509

on s. This is the case, for instance, if the brain’s internal model assigns equal probability to all T(s), in510

which case pb(I) evaluated at µI does not depend on s.511

Applying Bayes’ rule to decode s from the samples of x, and absorbing all terms that do not contain s512

into the proportionality constant, (S4) implies513

p(s|x(1), . . . ,x(t)) ∝ p(s)N (T(s); Ax̄,Σe−b) . (S5)

We can now rewrite this expression in the canonical form for the exponential family

p(s|x(1), . . . ,x(t)) ∝ g(s) exp(h(s)>x̄) where (6 restated)

g(s) = exp

(
−1

2
T(s)>Σ−1e−bT(s)

)
p(s) and (7 restated)

h(s) = T(s)>Σ−1e−bA. (8 restated)

Equating samples of x with instantaneous neural responses, the firing rate r is proportional to x̄. We can514

then conclude that, in the limit of large t, this model is a linear PPC over s as defined by (Ma et al., 2006).515
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