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Abstract1

Human decisions are known to be systematically biased. A prominent example of such a bias2

occurs when integrating a sequence of sensory evidence over time. Previous empirical studies di↵er3

in the nature of the bias they observe, ranging from favoring early evidence (primacy), to favoring4

late evidence (recency). Here, we present a unifying framework that explains these biases and5

makes novel psychophysical and neurophysiological predictions. By explicitly modeling both the6

approximate and the hierarchical nature of inference in the brain, we show that temporal biases7

depend on the balance between “sensory information” and “category information” in the stimulus.8

Finally, we present new data from a human psychophysics task that confirms a critical prediction9

of our framework showing that e↵ective temporal integration strategies can be robustly changed10

within each subject, and that allows us to exclude alternate explanations through quantitative11

model comparison.12

Introduction13

Imagine a doctor trying to infer the cause of a patient’s symptoms from an x-ray image. Unsure14

about the evidence in the image, she asks a radiologist for a second opinion. If she tells the15

radiologist her suspicion, she may bias his report. If she does not, he may not detect a faint16

diagnostic pattern. As a result, if the evidence in the image is hard to detect or ambiguous,17

the radiologist’s second opinion, and hence the final diagnosis, may be swayed by the doctor’s18

initial hypothesis. The problem faced by these doctors exemplifies the di�culty of hierarchical19

inference: each doctor’s suspicion both informs and is informed by their collective diagnosis. If20

they are not careful, their diagnosis may fall prey to circular reasoning. The brain faces a similar21

problem during perceptual decision-making: any decision-making area combines sequential signals22

from sensory brain areas, not directly from sensory input, just as the doctors’ consensus is based23

on their individual diagnoses rather than on the evidence per se. If sensory signals in the brain24

themselves reflect inferences that combine both prior expectations and sensory evidence, we suggest25
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that this can then lead to an observable perceptual confirmation bias (Nickerson, 1998; Michel and26

Peters, 2020).27

We formalize this idea in the context of approximate Bayesian inference and classic evidence-28

integration tasks in which a range of biases has been observed and for which a unifying explanation29

is currently lacking. Evidence-integration tasks require subjects to categorize a sequence of inde-30

pendent and identically distributed (iid) draws of stimuli (Gold and Shadlen, 2007; Bogacz et al.,31

2006). Previous normative models of evidence integration hinge on two quantities: the amount of32

information available on a single stimulus draw and the total number of draws. One might expect,33

then, that temporal biases should have some canonical form in tasks where these quantities are34

matched. However, existing studies are heterogeneous, reporting one of three distinct motifs: some35

find that early evidence is weighted more strongly (a primacy e↵ect) (Kiani et al., 2008; Nienborg36

and Cumming, 2009) some that information is weighted equally over time (as would be optimal)37

(Wyart et al., 2012; Brunton et al., 2013; Raposo et al., 2014), and some find late evidence being38

weighted most heavily (a recency e↵ect) (Drugowitsch et al., 2016) (Figure 1a,c). While there39

are myriad di↵erences between these studies such as subject species, sensory modality, stimulus40

parameters, and computational frameworks (Kiani et al., 2008; Brunton et al., 2013; Glaze et al.,41

2015; Drugowitsch et al., 2016), none of these aspects alone can explain their di↵erent findings.42

We extend classic evidence-integration models to the hierarchical case by including an explicit43

intermediate sensory representation, analogous to modeling each doctor’s individual diagnosis in44

addition to their consensus in the example above (Figure 1b). Taking this intermediate inference45

stage into account makes explicit that task di�culty is modulated by two distinct types of informa-46

tion exposing systematic di↵erences between existing tasks: the information between the stimulus47

and sensory representation (“sensory information”), and the information between sensory represen-48

tation and category (“category information”) (Figure 1b). These di↵erences alone do not entail any49

bias as long as inference is exact. However, inference in the brain is necessarily approximate and50

this approximation can interfere with its ability to account for its own biases. Implementing two51

approximate hierarchical inference algorithms, we find that they both result in biases in agreement52

with our data, and can indeed explain the puzzling discrepancies in the literature.53

Results54

Approximate hierarchical inference leads to temporal biases55

Normative models of decision-making in the brain are typically based on the idea of an ideal56

observer, who uses Bayes’ rule to infer the most likely category on each trial given the stimulus. On57

each trial in a typical task, the stimulus consists of multiple “frames” presented in rapid succession.58

(By “frames” we refer to discrete independent draws of stimulus values that are not necessarily59

visual). If the evidence in each frame, ef , is independent, then evidence can be combined by simply60

multiplying the associated likelihoods. This corresponds to the well-known process of summing the61

log odds implied by each piece of evidence (Wald and Wolfowitz, 1948; Bogacz et al., 2006):62

p(C = +1|e1, . . . , eF ) / p(C = +1)
FY

f=1

p(ef |C = +1)

log p(C = +1|e1, . . . , eF ) = log p(C = +1) +
FX

f=1

log p(ef |C = +1)

(1)
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Figure 1: a) A subject’s “temporal weighting strategy” is an estimate of how their choice is based
on a weighted sum of each frame of evidence ef . Three commonly observed motifs are decreasing
weights (primacy), constant weights (optimal), or increasing weights (recency). b) Information in
the stimulus about the category may be decomposed into information in each frame about a sensory
variable (“sensory information”) and information about the category given the sensory variable
(“category information”). c) Category information and sensory information may be manipulated
independently, creating a two-dimensional space of possible tasks. Any level of task performance
can be the result of di↵erent combinations of sensory and category information. A qualitative
placement of previous work into this space separates those that find primacy e↵ects in the upper-
left from those that find recency e↵ects or optimal weights in the lower right (see Supplemental Text
for detailed justification). Numbered references are: [1] Kiani et al., [2] Nienborg and Cumming,
[3] Brunton et al., [4] Wyart et al., [5] Raposo et al., [6] Drugowitsch et al.
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The ideal observer’s performance is thus determined only by (i) the information about C available63

on each frame, and (ii) the number of frames per trial.64

In the brain, however, a decision-making area cannot base its decision on the externally pre-65

sented stimulus directly, but must rely on intermediate sensory features, which we call xf . If sensory66

information is processed in a purely feedforward fashion with independent noise, then a decision-67

making area can simply integrate the evidence in xf directly. This is consistent with some theories68

of inference in the brain in which sensory areas represent a likelihood distribution over stimuli (Ma69

et al., 2006; Beck et al., 2008; Pouget et al., 2013; Walker et al., 2019). However, activity in sensory70

areas does not rigidly track the stimulus, but is known to be influenced by past stimuli (Yates71

et al., 2017; Lueckmann et al., 2018), as well as by feedback from the rest of the brain (Gilbert72

and Li, 2013; Keller and Mrsic-Flogel, 2018). In fact, the intermediate sensory representation is73

itself often assumed to be the result of an inference process over latent variables in an internal74

model of the world (Mumford, 1992; Lee and Mumford, 2003; Yuille and Kersten, 2006). This pro-75

cess is naturally formalized as hierarchical inference (Figure 1b) in which feedforward connections76

communicate the likelihood and feedback communicates the prior or other contextual expectations77

(Fiser et al., 2010; Pouget et al., 2013; Gershman and Beck, 2016; Tajima et al., 2017; Lange and78

Haefner, 2020).79

Returning to the evidence integration problem in equation (1), accounting for intermediate
sensory representations corresponds to marginalizing over the intervening xf to compute the in-
stantaneous evidence p(ef |C) as follows:

p(ef |C) =

Z
p(ef |xf )p(xf |C)dxf

=

Z
p(xf |ef )

p(ef )p(xf |C)

p(xf )
dxf . (2)

The first line is simply the definition of marginalizing over xf , and the terms in red in the second80

line are the result of applying Bayes’ rule to the red term in the first line. The integral incorporates81

sensory uncertainty over xf in the update to C, averaging over all plausible values weighted by82

p(xf |ef ), which is the posterior distribution over sensory features.83

Importantly, equation (2) is true for any prior over xf , since whatever prior, p(xf ), is used84

to compute the posterior, p(xf |ef ), is accounted for by dividing it out in the second term. In-85

corporating prior information into the sensory representation, therefore, does not introduce any86

bias, as long as the update to C can exactly account for (or “divide out”) that prior. However,87

if sensory areas only approximately represent the posterior p(xf |ef ), then downstream areas may88

only approximately be able to correct for the prior. Crucially, approximations to equation (2) can89

lead to biases.90

We hypothesize that feedback of “decision-related” information to sensory areas (Nienborg91

et al., 2012; Cumming and Nienborg, 2016) implements a prior that reflects current beliefs about92

the stimulus category (Haefner et al., 2016; Tajima et al., 2016; Lange and Haefner, 2020). Such93

a bias is, in fact, optimal in the sense that it incorporates information from earlier frames; in a94

correlated world, as in our task, the first frame e1 is informative of later sensory features xf . Using95

pf�1(C = c) = p(C = c|e1, . . . , ef�1) to denote the brain’s belief that the category is C = c after96

the first f � 1 frames, the posterior over xf given all frames, p(xf |e1, . . . , ef ), can be written as97

p(xf |e1, . . . , ef ) / p(ef |xf )
X

c

pf�1(C = c)p(xf |C = c)

| {z }
pf (xf )

.
(3)
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In other words, sensory areas dynamically combine instantaneous evidence (p(ef |xf )) with accumu-98

lated categorical beliefs (pf�1(C)) to arrive at a more precise estimate of present sensory features99

xf .100

As stated above, incorporating prior information into p(xf |ef ) does not necessarily lead to a101

bias, but approximately representing the posterior may lead to one. In the case where the prior102

contains information about earlier stimuli as in equation (3), under-correcting for this prior leads103

to earlier frames entering into the update twice, forming a positive feedback loop between estimates104

of xf and the belief in C. This mechanism, which we call a “perceptual confirmation bias,” leads to105

primacy e↵ects. Over-correcting for the prior, on the other hand, leads to information from earlier106

frames decaying away, observable as recency e↵ects.107

Below, we consider two models, each implementing approximate hierarchical inference in one of108

the two major classes of approximate inference schemes known from statistics and machine learning:109

sampling-based and variational inference (Bishop, 2006; Murphy, 2012), both of which have been110

previously proposed models for neural inference (Fiser et al., 2010; Pouget et al., 2013). In both111

models, temporal biases arise as a direct consequence of the approximate nature of inference over112

the intermediate sensory variables in the brain. The strength and direction of the bias (primacy or113

recency) depends on how how strong the prior influence of C on xf is – when this prior influence is114

strong, it is under-corrected, leading to a confirmation bias and primacy e↵ects. When the prior is115

weak, it is over-corrected, leading to recency e↵ects. Importantly, the strength of the prior influence116

of C on xf – and hence the predicted direction of the bias – is easily manipulated experimentally,117

as we describe next.118

“Sensory Information” vs “Category Information”119

Accounting for the intervening sensory x as in Figure 1b implies that the information between the120

stimulus and category can be partitioned into the information between the stimulus and the sensory121

representation (e to x), and the information between sensory representation and category (x to C).122

We call these “sensory information” and “category information,” respectively (Figure 1b). These123

two kinds of information define a two-dimensional space in which a given task is located as a single124

point (Figure 1c). For example, in a visual task each ef would be the image on the screen while xf125

might be image patches that are assumed to be sparsely combined to form the image (Olshausen126

and Field, 1997). The posterior over the latent features xf would be represented by the activity of127

relevant neurons in visual cortex.128

An evidence integration task may be challenging either because each frame is perceptually129

unclear (low “sensory information”), or because the relationship between stimulus and category130

is ambiguous in each frame (low “category information”). Consider the classic dot motion task131

(Newsome and Pare, 1988) and the Poisson clicks task (Brunton et al., 2013), which occupy opposite132

locations in the space. In the classic low-coherence dot motion task, subjects view a cloud of moving133

dots, a small percentage of which move “coherently” in one direction. Here, sensory information134

is low since the percept of net motion is weak on each frame. Category information, on the other135

hand, is high, since knowing the true net motion on a single frame would be highly predictive of136

the correct choice (and of motion on subsequent frames). In the Poisson clicks task on the other137

hand, subjects hear a random sequence of clicks in each ear and must report the side with the138

higher rate. Here, sensory information is high since each click is well above sensory thresholds.139

Category information, however, is low, since knowing the side on which a single click was presented140

provides only little information about the correct choice for the trial as a whole (and the side of the141

other clicks). When frames are sequential, another way to think about category information is as142

“temporal coherence” of the stimulus: the more each frame of evidence is predictive of the correct143
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choice, the more the frames must be predictive of each other, whether a frame consists of visual144

dots or of auditory clicks. Note that our distinction between sensory and category information145

is di↵erent from the well-studied distinction between internal and external noise; in general, both146

internal and external noise will reduce the amount of sensory and category information.147

Category information governs the strength of the prior fed back from C to xf . For instance, in148

a task with high category information such as dot motion, 60% certainty in the stimulus category149

translates to 60% certainty in the net motion on the next frame. In a low category information task150

such as the Poisson clicks task, on the other hand, 60% certainty about the side with more clicks151

is only weakly predictive of where the next click will appear. In equation (3), category information152

corresponds to the strength of the prior pf (xf ), and sensory information to the strength of the153

likelihood p(ef |xf ). If our hypothesis is correct that temporal biases are the result of approximate154

hierarchical inference, then trading o↵ between sensory information and category information should155

be su�cient to switch from primacy e↵ects to recency e↵ects, all while subjects’ overall performance156

is kept at threshold.157

Indeed, qualitatively placing prior studies in the space spanned by these two kinds of informa-158

tion results in two clusters: the studies that report primacy e↵ects are located in the upper left159

quadrant (low-sensory/high-category or LSHC) and studies with flat weighting or recency e↵ects160

are in the lower right quadrant (high-sensory/low-category or HSLC) (Figure 1c). This provides161

initial empirical evidence that approximate hierarchical inference dynamics, along with the trade-o↵162

between sensory information and category information, may indeed underlie di↵erences in temporal163

weighting seen in previous studies. Further, this framework predicts that simple changes in stimulus164

statistics should change the temporal weighting found in previous studies (Supplemental Table S1).165

We next describe a novel set of visual discrimination tasks designed to directly probe this trade-o↵166

between sensory information and category information to test these predictions within individual167

subjects.168

Visual Discrimination Task169

We designed a visual discrimination task with two stimulus conditions that correspond to the two170

opposite sides of this task space, while keeping all other aspects of the design the same (Figure 2a).171

If our theory is correct, then we should be able to change individual subjects’ temporal weighting172

strategy simply by changing the sensory-category information trade-o↵.173

The stimulus in our task consisted of a sequence of ten visual frames (83ms each). Each frame174

consisted of band-pass-filtered white noise with excess orientation power either in the �45� or the175

+45� orientation (Beaudot and Mullen, 2006) (Figure 2b,d). On each trial, there was a single true176

orientation category, but individual frames might di↵er in their orientation. At the end of each177

trial, subjects reported whether the stimulus was oriented predominantly in the �45� or the +45�178

orientation. The stimulus was presented as an annulus around the fixation marker in order to179

minimize the e↵ect of small fixational eye movements (Methods).180

If the brain’s intermediate sensory representation reflects the orientation in each frame, then181

sensory information in our task is determined by how well each image determines the orientation182

of that frame (i.e. the amount of “noise” in each frame), and category information is determined183

by the probability that any given frame’s orientation matches the trial’s category. We chose to184

quantify both sensory information and category information, using signal detection theory, as the185

area under the receiver-operating-characteristic curve for ef and xf (sensory information), or for xf186

and C (category information). Hence for a ratio of 5 : 5, a frame’s orientation does not predict the187

correct choice and category information is 0.5. For a ratio of 10 : 0, knowledge of the orientation of188
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Figure 2: Summary of experiment design. a) Category information is determined by the expected
ratio of frames in which the orientation matches the correct category, and sensory information is
determined by a parameter  determining the degree of spatial orientation coherence (Methods).
At the start of each block, we reset the staircase to the same point, with category information at
9 : 1 and  at 0.8. We then ran a 2-to-1 staircase either on  or on category information. The
LSHC and HSLC ovals indicate sub-threshold trials; only these trials were used in the regression to
infer subjects’ temporal weights. b) Visualization of a noisy stimulus in the LSHC condition. All
frames are oriented to the right. c) Psychometric curves for all subjects (thin lines) and averaged
(thick line) over the  staircase. Shaded gray area indicates the median threshold level across all
subjects. d) Example frames in the HSLC condition. The orientation of each frame is clear, but
orientations change from frame to frame. e) Psychometric curves over frame ratios, plotted as in
(c).
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Figure 3: Subjects’ temporal weights robustly change with stimulus statistics. a-b) Temporal
weights from logistic regression for individual subjects (thin lines) and the mean across all subjects
(thick lines). Weights are normalized to have a mean of 1 to emphasize shape rather than magnitude.
c) Di↵erence of normalized weights (HSLC�LSHC). Despite variability across subjects in (a-b),
each subject reliably changes in the direction of a recency e↵ect. d) Average log-likelihood di↵erence
from logistic regression for three regularized weight functions: logistic regression with a smoothness
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indicates that constraining weights to be linear or exponential functions of time is best. e-g)

Individual and average temporal weights, plotted as in (a-c), now using weights constrained to be
exponential functions of time. Weights in (e) and (f) are normalized to have mean 1 for visualization
purposes. h) Change in the exponential slope parameter between the two task contexts for each
subject is consistently positive (individually significant in 9 of 12 subjects). Points are median
slope values after bootstrap-resampling each subject’s sub-threshold trials. A slope parameter
� > 0 corresponds to recency and � < 0 to primacy (similar results for linear fits, Supplemental
Figure S2).
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a single frame is su�cient to determine the correct choice and category information is 1. Exactly189

quantifying sensory information depends on individual subjects, but likewise ranges from 0.5 to 1.190

For a more detailed discussion, see Supplementary Text.191

We recruited 15 human subjects, out of which 12 (9 naive and 3 authors) completed the ex-192

periment. For each subject, we compared two conditions intended to probe the di↵erence between193

the LSHC and HSLC regimes. Starting with both high sensory and high category information,194

we either ran a 2:1 staircase lowering the sensory information while keeping category information195

high, or we ran a 2:1 staircase lowering category information while keeping sensory information196

high (Figure 2a). These are the LSHC and HSLC conditions, respectively (Figure 2b,d). For each197

condition and each subject, we used logistic regression to infer the influence of each frame onto their198

choice. Subjects’ overall performance was matched in the two conditions by setting a performance199

threshold below which trials were included in the analysis (Methods).200

In agreement with our hypothesis, we find predominantly flat or decreasing temporal weights201

in the LSHC condition (Figure 3a,e). However, when the information is partitioned di↵erently –202

in the HSLC condition – we find flat or increasing weights (Figure 3b,f). In fact, the di↵erence in203

weights between conditions was remarkably consistent across subjects (Figure 3c,g). To quantify204

this change, we first used cross-validation to select a method for quantifying temporal slopes, and205

found that constraining weights to be a linear or exponential function of time worked equally well,206

and both outperformed plain or regularized logistic regression (Figure 3d; Methods). A within-207

subject comparison revealed that the change in slope between the two conditions was as predicted208

for all subjects (Figure 2h) (p < 0.05 for 9 of 12 subjects, bootstrap). This demonstrates that the209

trade-o↵ between sensory and category information in a task robustly changes subjects’ temporal210

weighting strategy as we predicted, and further suggests that the sensory-category information211

trade-o↵ may resolve the discrepant results in the literature.212

Approximate inference models213

We will now show that these significant changes in evidence weighting for di↵erent stimulus statis-214

tics arise naturally in common models of how the brain might implement approximate inference.215

In particular, we show that both a neural sampling-based approximation (Hoyer and Hyvärinen,216

2003; Fiser et al., 2010; Haefner et al., 2016; Orbán et al., 2016) and a parametric (mean-field)217

approximation (Beck et al., 2012; Raju and Pitkow, 2016) can explain the observed pattern of218

changing temporal weights as a function of stimulus statistics.219

Optimal inference in our task, as in other evidence integration tasks, requires computing the220

posterior over C conditioned on the evidence e1, . . . , ef , which can be expressed as the Log Posterior221

Odds (LPO),222

log
p(C = +1|e1, . . . , ef )
p(C = �1|e1, . . . , ef )| {z }

LPOf

= log
p(C = +1)

p(C = �1) +
fX

i=1

log
p(ei|C = +1)

p(ei|C = �1)| {z }
LLOi

, (4)

where LLOf is the log likelihood odds for frame f (Gold and Shadlen, 2007; Bogacz et al., 2006).223

To reflect the fact that the brain has access to only one frame of evidence at a time, this can224

be rewritten this as an online update rule, summing the previous frame’s log posterior with new225

evidence gleaned on the current frame:226

LPOf = LPOf�1 + LLOf . (5)
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Figure 4: Approximate inference models explain results. a) The di↵erence in stimulus statistics
between HSLC and LSHC trade-o↵s implies that the relevant sensory representation is di↵erentially
influenced by the stimulus or by beliefs about the category C. A “confirmation bias” or feedback
loop between x and C emerges in the LSHC condition but is mitigated in the HSLC condition.
Black lines indicate the underlying generative model, and red/blue lines indicate information flow
during inference. Arrow width represents coupling strength. b) Performance of an ideal observer
reporting C given ten frames of evidence. White line shows threshold performance, defined as 70%
correct. c) Performance of the sampling model with � = 0.1. Colored dots correspond to lines in
the next panel. d) Temporal weights in the model transition from recency to a strong primacy
e↵ect, all at threshold performance, as the stimulus transitions from the high-sensory/low-category
to the low-sensory/high-category conditions. e) Using the same exponential fit as used with human
subjects, visualizing how temporal biases change across the entire task space. Red corresponds to
primacy, and blue to recency. White contour as in (c). Black lines are iso-contours for slopes
corresponding to highlighted points in (c). f-h) Same as c-d but for the variational model with
� = 0.1.

This expression is derived from the ideal observer and is still exact. Since the ideal observer weights227

all frames equally, the online nature of inference in the brain cannot by itself explain temporal228

biases. Furthermore, because performance is matched in the two conditions of our experiment,229

their di↵erences cannot be explained by the total amount of information, governed by the likelihood230

p(ef |C).231

As we described earlier, we hypothesize that inference about xf incorporates past information232

from e1 through ef�1, and this can be implemented online by feeding back information in LPOf�1233

(equation (3)). Our models therefore assume a prior over xf that depends on the current belief in234

C. This assumption di↵ers from some models of inference in the brain that assume populations of235

sensory neurons strictly encode the likelihood of the stimulus (or instantaneous posterior) (Ma et al.,236

2006; Beck et al., 2008), but is consistent with other models from both sampling and parametric237

families (Berkes et al., 2011; Haefner et al., 2016; Raju and Pitkow, 2016; Tajima et al., 2016).238

We emphasize again that in the case of exact inference, this bias that is fed back could be exactly239

“subtracted out” in the update to LPOf ; temporal biases arise from the combination of feedback240

of current beliefs and by the approximate nature of the representation of the posterior on xf .241
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Sampling model242

The neural sampling hypothesis states that variable neural activity over brief time periods can be243

interpreted as a sequence of samples from the brain’s posterior over latent variables in its internal244

model. In our model, samples of xf are drawn from the full posterior having incorporated the245

running estimate of pf�1(C) (equation (3), Methods). Dividing out the prior that was fed back (as246

in equation (2)) is naturally formulated as “importance sampling,” which in our case weights each247

sample by the inverse of the prior (Shi and Gri�ths, 2009; Murphy, 2012) (Methods). In the most248

extreme case of continual online updates, one could imagine that the brain computes each update249

to pf (C) after observing a single sample of xf . In this case, no correction would be possible; a250

downstream area would be unable to recover the instantaneous likelihood from a single posterior251

sample. If the brain is able to base each update on multiple samples, then the importance weights252

of each sample in the update account for the discrepancy between the two (Methods). While this253

approach is unbiased in the limit of infinitely many samples, it incurs a bias for a finite number –254

the relevant regime for the brain (Owen, 2013). The bias is as if the expectation in (2) is taken255

with respect to an intermediate distribution that lies between the fully biased one (p(xf |e1, . . . , ef ))256

and the unbiased one based on instantaneous evidence only (p(xf |ef )) (Cremer et al., 2017).257

Under-correcting for the prior that was fed back results in a positive feedback loop between258

decision-making and sensory areas – the “perceptual confirmation bias” mechanism introduced259

above. Importantly, this feedback loop is strongest when category information is high, correspond-260

ing to stronger feedback, and sensory information is low, since then xf is both more dependent261

on the beliefs about C and less dependent on ef . Figure 4b and Supplemental Figure S5a-c show262

performance for the ideal observer and for the resulting sampling-based model, respectively, across263

all combinations of sensory and category information. White lines show threshold performance264

(70% correct) as in Figure 1c.265

This model reproduces the primacy e↵ect, and how the temporal weighting changes as the266

stimulus information changes seen in previous studies. Importantly, it predicted the same within-267

subject change seen in our data (Haefner et al., 2016). However, double-counting the prior alone268

cannot explain recency e↵ects (Supplemental Figure S5a-c,j-l).269

There are two simple and biologically-plausible explanations for the observed recency e↵ect270

which turn out to be nearly equivalent. First,the brain may try to actively compensate for the271

prior influence on the sensory representation by subtracting out an estimate of that influence.272

That is, the brain could do approximate bias correction to mitigate the e↵ect of the confirmation273

bias. We modeled linear bias correction by explicitly subtracting out a fraction of the running274

posterior odds at each step:275

LPOf  (1� �)LPOf�1 + ˆLLOf (6)

where 0  �  1 and ˆLLOf is the model’s (biased) estimate of the log likelihood odds. Second, the276

brain may assume a non-stationary environment, i.e. C is not constant over a trial. Interestingly,277

Glaze et al. (2015) showed that optimal inference in this case implies equation (6) when LPOf278

is small, which can be interpreted as a noiseless, discrete time version of the classic drift-di↵usion279

model (Gold and Shadlen, 2007) with � as a leak parameter.280

Incorporating equation (6) into our model reduces the primacy e↵ect in the upper left of the task281

space and leads to a recency e↵ect in the lower right (Figure 4c-e, Supplemental Figure S5), as seen282

in the data. We performed additional numerical experiments with the leak parameter, detailed in283

the Supplemental Text. Two findings are of note here. First, we found that in the regime where the284

confirmation bias is strongest (high category information), a moderate leak improves the model’s285

performance, contrary to the behavior of leaky integration in models without feedback, where it286

impairs performance. Second, we found that if the optimal � is used for all tasks (the value which287
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maximizes performance), then temporal biases vanish. Our data therefore imply that either the288

brain does not optimize its leak to the statistics of the current task, or that it does so on a timescale289

that is slower than a single experimental session (roughly 1 hour in our case).290

Variational model291

The second major class of models for how probabilistic inference may be implemented in the brain292

– based on mean-field parametric representations (Ma et al., 2006; Beck et al., 2012) – behaves293

similarly. These models commonly assume that distributions are encoded parametrically in the294

brain, but that the brain explicitly accounts for dependencies only between subsets of variables, e.g.295

within the same cortical area. (Raju and Pitkow, 2016). We therefore make the assumption that296

the joint posterior p(x,C|e) is approximated in the brain by a product of parametric distributions,297

q(x)q(C) (Beck et al., 2012; Raju and Pitkow, 2016). Inference proceeds by iteratively minimizing298

the Kullback-Leibler divergence between q(x)q(C)q(z) and p(x,C, z|e), where z is an auxiliary299

variable we introduce to make this a product of exponential families, as is common practice for300

mean field variational inference algorithms (Methods). As in the sampling model, the current belief301

about the category C acts as a prior over x. Because this model is unable to explicitly represent302

posterior dependencies between sensory and decision variables, both x and C being positive and303

both x and C being negative act as attractors of its temporal dynamics. This yields qualitatively304

the same behavior as the sampling model: a stronger influence of early evidence and a transition305

from primacy to flat weights as category information decreases. As in the sampling model, recency306

e↵ects emerge only when approximate bias correction is added (Figure 4f-h, Supplemental Figure307

S5j-r). Whereas the limited number of samples was the key deviation from optimality in the308

sampling model, here it is the assumption that the brain represents its beliefs separately about x309

and C in a factorized form (Methods).310

Confirmation bias, not bounded integration, explains primacy ef-311

fects312

The primary alternative explanation for primacy e↵ects in fixed-duration integration tasks proposes313

that subjects integrate evidence to an internal bound, at which point they cease paying attention314

to the stimulus. In this scenario, early evidence almost always enters the decision-making pro-315

cess while evidence late in trial is often ignored. Averaged over many trials, this results in early316

evidence having a larger e↵ect on the final decision than late evidence, and hence decreasing re-317

gression weights (and psychophysical kernels) just as we found in the LSHC condition (Kiani et al.,318

2008). While superficially similar, both models reflect very di↵erent underlying mechanism: in our319

approximate hierarchical inference models, a confirmation bias ensures that early evidence has a320

larger e↵ect on the final decision than late evidence for every single trial. In the integration to321

bound (ITB) model, in a single trial, all evidence is weighed exactly the same before the bound is322

hit. and not at all afterwards. In order to test whether the integration to bound (ITB) mechanism323

could explain our results we developed a functional integration model that could be fit directly to324

subjects’ behavior (Figure 5a). Our functional model is a simple extension to classic drift di↵usion325

models, which can also be interpreted as integrating log odds (Gold and Shadlen, 2007). Until it326

hits a bound or the trial ends, the model integrates signals as follows:327

LPOf =

8
><

>:

+bound if LPOf�1 � +bound

�bound if LPOf�1  �bound
(1� �)LPOf�1 + g(sf ) + ✏ otherwise

, (7)
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Figure 5: Results of fitting functional model show that a leak, rather than a bound, accounts for
most of the observed biases. a) We fit a functional model of integration dynamics. As in classic
drift-di↵usion models, evidence is integrated to an internal bound, at which point subsequent
frames are ignored. Compared to perfect integration (leak= 0), a positive leak (leak> 0) decays
information away and results in recency e↵ects, and a negative leak (leak< 0) amplifies already
integrated information, resulting in primacy e↵ects. Notice that leak < 0 may also result in more
bound crossings – both the leak and the bound together will determine the shape of the temporal
weights. b) Across both conditions, the temporal slopes (�) implied by the fit model closely
match the slopes in the data. Recall that � < 0 corresponds to primacy, and � > 0 to recency.
c) Inferred value of the bound and leak parameters in each condition, shown as median±68%
confidence intervals. Ellipses depict the spread of subject means. The classic ITB explanation of
primacy e↵ects corresponds to a non-negative leak and a small bound – illustrated here as a shaded
green area. Note that the three subjects near the ITB regime are points from the HSLC task – two
still exhibit mild recency e↵ects and one exhibits a mild primacy e↵ect as predicted by ITB. d) We
quantified the impact of the leak term and of the bound and noise terms by ablating them from
the model then comparing the resulting temporal bias to the subject’s actual bias (Methods). This
lets us approximately quantify the fraction of each e↵ect attributable to each parameter (but they
do not necessarily sum to 1). In the LSHC condition, the (negative) leak parameter accounted for
nearly all of the observed primacy e↵ects. In the HSLC condition, the (positive) leak parameter
accounted for more than 100% of the observed recency e↵ects, since it was counteracted by the
presence of a bound. Note that the single outlying subject (diamond symbols) corresponds to the
outlying subject in panels (c) and (b) – see Supplemental Figure S13 for more information.
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where sf is the stimulus on frame f and ✏ is additive Gaussian noise. The function g(s) translates328

from stimuli seen by the subjects into equivalent log odds, adjusting for the category and sensory329

information in the task (Methods). This model di↵ers from our earlier hierarchical inference model330

in a few key ways. First, the signal that is integrated each frame, g(sf ), is derived from the stimulus331

our subjects saw and contains no approximation nor inherent positive-feedback or confirmation-332

bias dynamics. Second, noise is added explicitly, whereas before all stochasticity came from the333

approximate computation of log odds, e.g. by sampling. Third, the model stops integrating when334

it hits an internal bound. Fourth, the model functionally replicates confirmation-bias dynamics335

by allowing the leak term, �, to be negative; when � is positive, information from earlier frames336

decays away, but when � is negative, earlier information is amplified (Busemeyer and Townsend,337

1993; Bogacz et al., 2006).338

The functional model exhibits three distinct regimes of behavior. First, when the leak is positive339

and the bound is large, it produces recency biases. Second, when the bound is small, it produces340

primacy biases as in the ITB model (Kiani et al., 2008), as long as the leak is also small so that341

it does not prevent the bound from being crossed. Third, when the bound is large and the leak342

is negative, it also produces primacy biases but now due to confirmation-bias-like dynamics rather343

than due to bounded integration. In this regime, where 1 � � > 1, early evidence is “double-344

counted” and this model becomes functionally indistinguishable from our approximate hierarchical345

inference models (Supplemental Figure S10). Crucially, this means that this single model family346

can account for both primacy due to ITB and primacy due to a confirmation bias by di↵erent347

parameter values (recovery of ground-truth mechanisms shown in Supplemental Figures S11, S12)348

and we can use it to distinguish between the di↵erent proposals by fitting a single model to our349

data and examining its parameters.350

We fit the functional model to sub-threshold trials from our subjects, separately for the LSHC351

and the HSLC conditions. We first asked whether the inferred model parameters reproduced the352

observed biases. Indeed, Figure 5b shows near-perfect agreement between the temporal biases353

implied by simulating choices from the fitted models and the biases inferred directly from subjects’354

choices. Figure 5c shows the posterior mean and 68% confidence interval for the leak parameter355

(�) and bound parameter inferred for each subject. The model consistently infers a negative leak356

in the LSHC condition and positive leak in the HSLC condition for all subjects, suggesting that the357

confirmation-bias dynamics implied by the negative leak are crucial to explain subject’s primacy358

biases in the LSHC condition, as well as the change in bias from LSHC to HSLC conditions.359

However, while the inferred bound for every single subject is so high as not to contribute at all if360

the leak was zero, it is possible that bounded integration still contributes to primacy e↵ects, given361

that a stronger negative leak will hit a bound more often.362

To determine the relative contribution of the leak and bound parameters to temporal biases,363

we simulated choices from the posterior over model parameters with either the leak parameter set364

to zero or after eliminating the bound (Methods). If ablating the bound leaves temporal biases365

unchanged, then we can conclude that biases were driven by the leak, and conversely, a temporal366

bias after ablating the leak must be due to the bound. We computed a population-level “ablation367

index” for each parameter, which is 0 if removing the parameter has no e↵ect on �, and is 1 if368

removing it destroys all temporal biases. The ablation index can therefore be loosely interpreted as369

the fraction of the subjects’ primacy or recency biases that are attributable to each parameter (but370

they do not necessarily sum to 1 because � is a nonlinear combination of parameters). In the LSHC371

condition, we found that our subjects’ primacy e↵ects are driven mostly by confirmation-bias-like372

integration dynamics rather than by bounded integration, though both mechanisms play some role373

(Figure 5d). The ablation index for the leak term was 0.89 (68% CI=[0.87, 0.96]), and for the bound374

term it was 0.19 (68% CI=[0.15, 0.25]) (Figure 5d). This indicates that although both mechanisms375
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are present, primacy e↵ects in our data are dominated by the self-reinforcing dynamics of a negative376

leak. In the HSLC condition, as expected, we found that recency e↵ects are driven mostly by the377

leak parameter (Figure 5d). The ablation index for the leak term was 0.92 (68% CI=[0.69, 1.17]),378

and for the bound it was 0.01 (68% CI=[�0.41, 0.43]) (Figure 5d). The index above 1 for the leak379

and below 0 for the bound reflects the fact that recency e↵ects can be balanced by the bound, so380

that in the absence of a leak, the bias reverts to a slight primacy e↵ect due to an ITB mechanism,381

and in the absence of a mitigating bound, the recency e↵ect appears stronger.382

Interestingly, one subject exhibited a slight primacy e↵ect in the HSLC condition, and our383

analyses suggest this was primarily due to bounded integration dynamics as proposed by Kiani384

et al (2008). This outlier subject is marked with a diamond symbol throughout Figure 5, and is385

further highlighted in Supplemental Figure S13. However, even this subject’s primacy e↵ect in386

the LSHC condition was driven by a confirmation bias (negative leak), and their change in slope387

between LSHC and HSLC conditions was in the same direction as the other subjects. Importantly,388

finding a primacy e↵ect due to an internal bound confirms that our model fitting procedure is able389

to detect such e↵ects when they are in fact present.390

Two additional subjects appear to have low bounds in the HSLC condition (Figure 5c), but are391

dominated by the positive leak, resulting in an overall recency bias. For these subjects, the recency392

e↵ect is further exaggerated when the bound is ablated, or flipped to primacy when the leak is393

ablated, resulting in ablation indices below 0 for the bound and above 1 for the leak (Figure 5d,394

steepest downward trending line in HSLC condition).395

Discussion396

Our work makes three main contributions. First, we show that online inference in a hierarchical397

model can result in characteristic task-dependent temporal biases, and further that such biases398

naturally arise in two specific families of biologically-plausible approximate inference algorithms.399

Second, explicitly modeling the mediating sensory representation allows us to partition the infor-400

mation in the stimulus about the category into two parts – “sensory information” and “category401

information” – defining a novel two-dimensional space of possible tasks. Third, we collect new data402

confirming a critical prediction of our theory, namely that individual subjects’ temporal biases403

change depending on the nature of the information in the stimulus. Fitting a phenomenological404

model to subjects’ behavior confirmed that these changes in biases are functionally due to a change405

in integration dynamics rather than bounded integration. These results strongly suggest that the406

discrepancy in temporal biases reported by previous studies may be resolved by considering how407

their tasks trade o↵ sensory and category information.408

We used two distinct families of models to arrive at these conclusions. We first introduced409

a class of hierarchical inference models based on Importance Sampling (IS) or Variational Bayes410

(VB). Due to approximate inference dynamics – discussed in detail below – both of these models411

exhibit a confirmation bias in tasks with high category information, and they transition to recency412

e↵ects in the high sensory information regime. Our hierarchical inference models distill the com-413

plexities of inference in large generative models down to just three scalar variables to isolate and414

study confirmation-bias dynamics, but the results generalize to higher-dimensional and deeper hier-415

archical models (Supplemental Figure S9). In our reduced models, we found that confirmation bias416

dynamics are functionally indistinguishable from noisy integration with a negative leak (Busemeyer417

and Townsend, 1993; Bogacz et al., 2006). This motivated the second class of functional or descrip-418

tive rather than mechanistic models, which allowed us to estimate the parameters of integration419

dynamics directly and compare this to an alternate explanation for primacy e↵ects in the literature420
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(Kiani et al., 2008). Our conclusions thus proceed in two stages: first, the changes in our subjects’421

apparent weighting strategies are functionally explained by a change in the integration dynamics422

(primacy as � < 0, recency as � > 0). Second, these changes are themselves parsimoniously ex-423

plained by hierarchical inference: functional changes in the leak parameter between tasks are a424

natural consequence of approximate hierarchical inference with all model parameters, including the425

leak, constant across tasks. While it is parsimonious to assume that the leak parameter is constant426

in the hierarchical inference models, we found that the optimal or normative leak parameter is high427

in the LSHC regime and low in the HSLC regime (Supplemental Figure S6) such that it balances428

the confirmation bias dynamics. Yet, we also considered the possibility that subjects infer the429

environment to be more volatile in the HSLC condition (Glaze et al. (2015); Figure S8), resulting430

in the opposite trend of stronger leak in the HSLC relative to LSHC condition. Our present data431

cannot speak to whether � is truly fixed, or whether it is only constant by an accident of balancing432

bias-correction with a volatile environment. We leave this as a question for future work.433

The “confirmation bias” emerges in our hierarchical inference models as the result of four434

key assumptions. Our first assumption is that inference in evidence integration tasks is in fact435

hierarchical, in particular that the di↵erent levels of the hierarchy require integrating evidence436

at di↵erent timescales, and that the brain approximates the posterior distribution over both the437

slow-changing category, C, and fast-changing intermediate sensory variables, x. This is in line438

with converging evidence that populations of sensory neurons encode posterior distributions of439

corresponding sensory variables (Lee and Mumford, 2003; Yuille and Kersten, 2006; Berkes et al.,440

2011; Beck et al., 2012) incorporating dynamic prior beliefs via feedback connections (Lee and441

Mumford, 2003; Yuille and Kersten, 2006; Beck et al., 2012; Nienborg and Roelfsema, 2015; Tajima442

et al., 2016; Orbán et al., 2016; Haefner et al., 2016; Lange and Haefner, 2020), which contrasts443

with other probabilistic theories in which only the likelihood is represented in sensory areas (Ma444

et al., 2006; Beck et al., 2008; Orhan and Ma, 2017; Walker et al., 2019).445

Our second key assumption is that evidence is accumulated online. In our models, the belief446

over C is updated based only on the posterior from the previous step and the current posterior over447

x. This can be thought of as an assumption that the brain does not have a mechanism to store448

and retrieve earlier frames veridically, but must make use of currently available summary statistics.449

This is consistent with drift-di↵usion models of decision-making (Gold and Shadlen, 2007). As450

mentioned in the main text, the assumptions until now – hierarchical inference with online updates451

– do not entail any temporal biases for an ideal observer. Further, the use of discrete time in our452

experiment and models is only for mathematical convenience – we expect analogous dynamics to453

emerge in continuous-time problems that involve online inference at multiple timescales.454

Third, we implemented hierarchical online inference making specific assumptions about the455

limited representational power of sensory areas. In the sampling model, we assumed that the brain456

can draw a limited number of independent samples of x per update to C. Interestingly, we found457

that in the small sample regime, the models is inherently unable to account for the prior bias of458

C on x in its updates to C. Existing neural models of sampling typically assume that samples459

are distributed temporally (Hoyer and Hyvärinen, 2003; Fiser et al., 2010), but it has also been460

proposed that the brain could run multiple sampling “chains” distributed spatially (Savin and461

Denève, 2014). The relevant quantity for our model is the total e↵ective number of independent462

samples that can be generated, stored, and evaluated in a batch to compute each update. The463

more samples, the smaller the bias predicted by this model.464

We similarly limited the representational capacity of the variational model by enforcing that the465

posterior over x is unimodal, and that there is no explicit representation of dependencies between466

x and C. Importantly, this does not imply that x and C do not influence each other. Rather, the467

Variational Bayes algorithm expresses these dependencies in the dynamics between the two areas:468
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each update that makes C = +1 more likely pushes the distribution over x further towards +1,469

and vice versa. Because the number of dependencies between variables grows exponentially, such470

approximates are necessary in variational inference with many variables (Fiser et al., 2010). The471

Mean Field Variational Bayes algorithm algorithm that we use here has been previously proposed472

as a candidate algorithm for neural inference (Raju and Pitkow, 2016).473

The assumptions up to now predict a primacy e↵ect but cannot account for the observed recency474

e↵ects. When we incorporate a leak term in our models, they reproduce the observed range of biases475

from primacy to recency. The existence of such a leak term is supported by previous literature476

(Usher and McClelland, 2001; Bogacz et al., 2006). Further, it is normative in our framework in477

the sense that reducing the bias in the above models improves performance (Supplemental Figures478

S5-S7). The optimal amount of bias correction depends on the task statistics: in the LSHC regime479

where the confirmation bias is strongest, a stronger leak is needed to correct for it. While it is480

conceivable that the brain would optimize the amount of bias correction to the task (Brunton et al.,481

2013; Piet et al., 2018), our data suggest it is stable across our LSHC and HSLC conditions, or482

adapted slowly.483

It has been proposed that post-decision feedback biases subsequent perceptual estimations484

(Stocker and Simoncelli, 2007; Talluri et al., 2018). While in spirit similar to our confirmation485

bias model, there are two conceptual di↵erences between these models and our own: First, the486

feedback from decision area to sensory area in our model is both continuous and online, rather487

than conditioned on a single choice after a decision is made. Second, our models are derived from488

an ideal observer and only incur bias due to algorithmic approximations, while previously proposed489

“self-consistency” biases are not normative and require separate justification.490

Our confirmation bias models predict attractor dynamics between di↵erent levels of the cortical491

hierarchy representing accumulated evidence and instantaneous sensory data. This contrasts with492

classic attractor models of decision-making which posit a recurrent feedback loop within a decision-493

making area (Wang, 2008; Wimmer et al., 2015). In our models, the strength of the coupling494

between decision-making and sensory areas depends on the category information in the stimulus.495

Given recent evidence that noise correlations contain a task-dependent feedback component (Bondy496

et al., 2018), we therefore suspect a reduction of task-dependent noise correlations in comparable497

tasks with lower category information. The confirmation bias mechanism may also account for498

the recent finding that stronger attractor dynamics are seen in a categorization task than in a499

comparable estimation task (Tajima et al., 2017).500

Alternative models have been previously proposed to explain primacy and recency e↵ects in501

evidence accumulation. We have already discussed the relation between our confirmation-bias502

models, bounded integration (Kiani et al., 2008), and a negative leak (Busemeyer and Townsend,503

1993; Bogacz et al., 2006). Deneve (2012) showed that simultaneous inference about stimulus504

strength and choice and in tasks with trials of variable di�culty can lead to either a primacy or a505

recency e↵ect (Deneve, 2012). However, this model, as in the case of classic ITB models discussed506

earlier, depends only on the total information per frame (i.e. p(C|ef )) and hence cannot explain507

the di↵erence between the data for the LSHC and the HSLC conditions since both conditions508

are matched in terms of total information. While such other mechanisms can coexist with the509

confirmation bias dynamic proposed by our model, no previously proposed mechanism is su�cient510

to explain the pattern in our data for which the trade-o↵ between sensory- and category-information511

is crucial. In general, any model based only on the total information per frame cannot explain the512

pattern in our data without additional parameters (such as separate leaks and bounds in each513

condition), which would beg additional justifications.514

While our focus is on the perceptual domain in which subjects integrate evidence over a timescale515

on the order of tens or hundreds of milliseconds, analogous principles hold in the cognitive domain516
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over longer timescales. The crucial computational motif underlying our model of the confirmation517

bias is hierarchical inference over multiple timescales. An agent in such a setting must simultane-518

ously make accurate judgments of current data (based on the current posterior) and track long-term519

trends (based on all likelihoods). For instance, Zylberberg et al. (2018) identified an analogous520

challenge when subjects must simultaneously make categorical decisions each trial (their “fast”521

timescale) while tracking the stationary statistics of a block of trials (their “slow” timescale), anal-522

ogous to our LSHC condition. As the authors describe, if subjects base model updates on posteriors523

rather than likelihoods, they will further entrench existing beliefs (Zylberberg et al., 2018). How-524

ever, the authors did not investigate order e↵ects; our confirmation bias would predict that subjects’525

estimates of block statistics is biased towards earlier trials in the block (primacy). Schustek et al.526

(2018) likewise asked subjects to track information across trials in a cognitive task more analogous527

to our HSLC condition, and report close to flat weighting of evidence across trials Schustek and528

Moreno-bote (2018).529

The strength of the perceptual confirmation bias is directly related to the integration of internal530

“top-down” beliefs and external “bottom-up” evidence previously implicated in clinical dysfunctions531

of perception (Jardri and Denéve, 2013). Therefore, the di↵erential e↵ect of sensory and category532

information may be useful in diagnosing clinical conditions that have been hypothesized to be533

related to abnormal integration of sensory information with internal expectations (Fletcher and534

Frith, 2009).535

Hierarchical (approximate) inference on multiple timescales is a common motif across percep-536

tion, cognition, and machine learning. We suspect that all of these areas will benefit from the537

insights on the causes of the confirmation bias mechanism that we have described here and how538

they depend on the statistics of the inputs in a task.539

Methods540

Visual Discrimination Task541

We recruited students at the University of Rochester as subjects in our study. All were compensated542

for their time, and methods were approved by the Research Subjects Review Board. We found no543

di↵erence between naive subjects and authors, so all main-text analyses are combined, with data544

points belonging to authors and naive subjects indicated in Figure 3d.545

Our stimulus consisted of ten frames of band-pass filtered noise (Beaudot and Mullen, 2006;546

Nienborg and Cumming, 2014) masked by a soft-edged annulus, leaving a “hole” in the center for547

a small cross on which subjects fixated. The stimulus subtended 2.6 degrees of visual angle around548

fixation. Stimuli were presented using Matlab and Psychtoolbox on a 1920x1080px 120 Hz monitor549

with gamma-corrected luminance (Brainard, 1997). Subjects kept a constant viewing distance of550

36 inches using a chin-rest. Each trial began with a 200ms “start” cue consisting of a black ring551

around the location of the upcoming stimulus. Each frame lasted 83.3ms (12 frames per second).552

The last frame was followed by a single double-contrast noise mask with no orientation energy.553

Subjects then had a maximum of 1s to respond, or the trial was discarded (Supplemental Figure554

S1). The stimulus was designed to minimize the e↵ects of small fixational eye movements: (i) small555

eye movements do not provide more information about either orientation, and (ii) each 83ms frame556

was too fast for subjects to make multiple fixations on a single frame.557

The stimulus was constructed from white noise that was then masked by a kernel in the Fourier558

domain to include energy at a range of orientations and spatial frequencies but random phases559

(Beaudot and Mullen, 2006; Nienborg and Cumming, 2014; Bondy et al., 2018) (a complete descrip-560

tion and parameters can be found in the Supplemental Text). We manipulated sensory information561

18

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2020. ; https://doi.org/10.1101/440321doi: bioRxiv preprint 

https://doi.org/10.1101/440321
http://creativecommons.org/licenses/by-nc-nd/4.0/


by broadening or narrowing the distribution of orientations present in each frame, centered on562

either +45� or �45� depending on the chosen orientation of each frame. We manipulated category563

information by changing the proportion of frames that matched the orientation chosen for that564

trial. The range of spatial frequencies was kept constant for all subjects and in all conditions.565

Trials were presented in blocks of 100, with typically 8 blocks per session (about 1 hour). Each566

session consisted of blocks of only HSLC or only LSHC trials (Figure 2). Subjects completed567

between 1500 and 4400 trials in the LSHC condition, and between 1500 and 3200 trials in the568

HSLC condition. After each block, subjects were given an optional break and the staircase was569

reset to  = 0.8 and pmatch = 0.9. pmatch is defined as the probability that a single frame matched570

the category for a given trial. In each condition, psychometric curves were fit to the concatenation571

of all trials from all sessions using the Psignifit Matlab package (Schütt et al., 2016), and temporal572

weights were fit to all trials below each subject’s threshold.573

Low Sensory-, High Category-Information (LSHC) Condition574

In the LSHC condition, a continuous 2-to-1 staircase on  was used to keep subjects near threshold575

( was incremented after each incorrect response, and decremented after two correct responses in576

a row). pmatch was fixed to 0.9. On average, subjects had a threshold (defined as 70% correct) of577

 = 0.17±0.07 (1 standard deviation). Regression of temporal weights was done on all sub-threshold578

trials, defined per-subject.579

High Sensory-, Low Category-Information (HSLC) Condition580

In the HSLC condition, the staircase acted on pmatch while keeping  fixed at 0.8. Although pmatch581

is a continuous parameter, subjects always saw 10 discrete frames, hence the true ratio of frames582

ranged from 5:5 to 10:0 on any given trial. Subjects were on average 69.5% ± 4.7% (1 standard583

deviation) correct when the ratio of frame types was 6:4, after adjusting for individual biases in the584

5:5 case. Regression of temporal weights was done on all 6:4 and 5:5 ratio trials for all subjects.585

Logistic Regression of Temporal Weights586

We constructed a matrix of per-frame signal strengths S on sub-threshold trials by measuring the587

empirical signal level in each frame. This was done by taking the dot product of the Fourier-domain588

energy of each frame as it was displayed on the screen (that is, including the annulus mask applied589

in pixel space) with a di↵erence of Fourier-domain kernels at +45� and �45� with  = 0.16. This590

gives a scalar value per frame that is positive when the stimulus contained more +45� energy and591

negative when it contained more �45� energy. Signals were z-scored before performing logistic592

regression, and weights were normalized to have a mean of 1 after fitting.593

Temporal weights were first fit using (regularized) logistic regression with di↵erent types of594

regularization. The first regularization method consisted of an AR0 (ridge) prior, and an AR2595

(curvature penalty) prior. We did not use an AR1 prior to avoid any bias in the slopes, which is596

central to our analysis.597

To visualize regularized weights in Figure 3, the ridge and AR2 hyperparameters were chosen598

using 10-fold cross-validation for each subject, then averaging the optimal hyperparameters across599

subjects for each task condition. This cross validation procedure was used only for display pur-600

poses for individual subjects in Figure 3a-c of the main text, while the linear and exponential fits601

(described below) were used for statistical comparisons. Supplemental Figure S4 shows individual602

subjects’ weights with no regularization.603
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We used two methods to quantify the shape (or slope) of w: by constraining w to be either604

an exponential or linear function of time, but otherwise optimizing the same maximum-likelihood605

objective as logistic regression. Cross-validation suggests that both of these methods perform sim-606

ilarly to either unregularized or the regularized logistic regression defined above, with insignificant607

di↵erences (Supplemental Figure S3). The exponential is defined as608

w
exponential

f = ↵ exp (�f) (8)

where f refers to the frame number. � gives an estimate of the shape of the weights w over time,609

while ↵ controls the overall magnitude. � > 0 corresponds to recency and � < 0 to primacy. The610

� parameter is reported for human subjects in Figure 3d, and for the models in Figure 4e,h.611

The second method to quantify slope was to constrain the weights to be a linear function in612

time:613

w
linear

f = a+ slope⇥ f (9)

where slope > 0 corresponds to recency and slope < 0 to primacy.614

Figure 3d shows the median exponential shape parameter (�) after bootstrapped resampling of615

trials 500 times for each subject. Both the exponential and linear weights give comparable results616

(Supplemental Figure S2).617

To compute the combined temporal weights across all subjects (in Figure 3a-c), we first esti-618

mated the mean and variance of the weights for each subject by bootstrap-resampling of the data619

500 times without regularization. The combined weights were computed as a weighted average620

across subjects at each frame, weighted by the inverse variance estimated by bootstrapping.621

Because we are not explicitly interested in the magnitude of w but rather its shape over stimulus622

frames, we always plot a “normalized” weight, w/mean(w), both for our experimental results623

(Figure 3a-c) and for the model (Figure 4d,g).624

Approximate inference models625

We model evidence integration as Bayesian inference in a three-variable generative model (Figure626

4a) that distills the key features of online evidence integration in a hierarchical model (Haefner627

et al., 2016). The variables in the model are mapped onto the sensory periphery (e), sensory cortex628

(x), and a decision-making area (C) in the brain.629

In the generative direction, on each trial, the binary value of the correct choice C 2 {�1,+1}630

is drawn from a 50/50 prior. xf is then drawn from a mixture of two Gaussians:631

x(gen)f ⇠
(
N (+C,�2

x) with prob. equal to category info.

N (�C,�2

x) otherwise
(10)

Finally, each ef is drawn from a Gaussian around xf :632

e(gen)f ⇠ N (xf ,�
2

e) (11)

When we model inference in this model, we assume that the subject has learned the correct model633

parameters, even as parameters change between the two di↵erent conditions. This is why we ran634

our subjects in blocks of only LSHC or HSLC trials on a given day.635

Category information in this model can be quantified by the probability that x(gen)f is drawn636

from the mode that matches C. We quantify sensory information as the probability with which an637

ideal observer can recover the sign of xf . That is, in our model sensory information is equivalent638
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to the area under the ROC curve for two univariate Gaussian distributions separated by a distance639

of 2, which is given by640

sensory info. = �(
p
2/�e) (12)

where � is the inverse cumulative normal distribution.641

Because the e↵ective time per update in the brain is likely faster than our 83ms stimulus frames,642

we included an additional parameter nU for the number of online belief updates per stimulus frame.643

In the sampling model described below, we amortize the per-frame updates over nU steps, updating644

nU times per frame using 1

nU
ˆLLOf . In the variational model, we interpret nU as the number of645

coordinate ascent steps.646

Simulations of both models were done with 10000 trials per task type and 10 frames per trial.647

To quantify the evidence-weighting of each model, we used the same logistic regression procedure648

that was used to analyze human subjects’ behavior. In particular, temporal weights in the model649

are best described by the exponential weights (equation (8)), so we use � to characterize the model’s650

biases.651

Sampling model652

The sampling model estimates p(ef |C) using importance sampling of x, where each sample is653

drawn from a pseudo-posterior using the current running estimate of pf�1(C) ⌘ p(C|e1, .., ef�1) as654

a marginal prior:655

x(s)f ⇠ Q(x) / p(ef |xf )
X

c

p(xf |C = c)pf�1(C = c) (13)

Using this distribution, we obtain the following unnormalized importance weights.656

ŵ(s) =

 
X

c

p(x(s)f |C = c)pf�1(C = c)

!�1

(14)

In the self-normalized importance sampling algorithm these weights are then normalized as follows,

ŵ(s) =
w(s)

P
iw

(i)
,

though we found that this had no qualitative e↵ect on the model’s ability to reproduce the trends657

in the data. The above equations yield the following estimate for the log-likelihood ratio needed658

for the belief update rule in equation (6):659

ˆLLOf = log

SP
s=1

p(x(s)f |C = +1)w(s)

SP
s=1

p(x(s)f |C = �1)w(s)

(15)

In the case of infinitely many samples, these importance weights exactly counteract the bias intro-660

duced by sampling from the posterior rather than likelihood, thereby avoiding any double-counting661

of the prior, and hence, any confirmation bias. However, in the case of finite samples, S, biased662

evidence integration is unavoidable.663

The full sampling model is given in Supplemental Algorithm S1. Simulations in the main text664

were done with S = 5, nU = 5, normalized importance weights, and � = 0 or � = 0.1.665
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Variational model666

The core assumption of the variational model is that while a decision area approximates the pos-667

terior over C and a sensory area approximates the posterior over x, no brain area explicitly rep-668

resents posterior dependencies between them. That is, we assume the brain employs a mean field669

approximation to the joint posterior by factorizing p(C, x1, . . . , xF |e1, . . . , eF ) into a product of ap-670

proximate marginal distributions q(C)
QF

f=1
q(xf ) and minimizes the Kullback-Leibler divergence671

between q and p using a process that can be modeled by the Mean-Field Variational Bayes algorithm672

(Murphy, 2012).673

By restricting the updates to be online (one frame at a time, in order), this model can be seen as674

an instance of “Streaming Variational Bayes” (Broderick et al., 2013). That is, the model computes675

a sequence of approximate posteriors over C using the same update rule for each frame. We thus676

only need to derive the update rules for a single frame and a given prior over C; this is extended677

to multiple frames by re-using the posterior from frame f � 1 as the prior on frame f .678

As in the sampling model, this model is unable to completely discount the added prior over679

x. Intuitively, since the mean-field assumption removes explicit correlations between x and C, the680

model is forced to commit to a marginal posterior in favor of C = +1 or C = �1 and x > 0 or681

x < 0 after each update, which then biases subsequent judgments of each.682

To keep conditional distributions in the exponential family (which is only a matter of math-683

ematical convenience and has no e↵ect on the ideal observer), we introduce an auxiliary variable684

zf 2 {�1,+1} that selects which of the two modes xf is in:685

zf =

(
+1 with probability equal to category info

�1 otherwise
(16)

such that686

xf ⇠ N (zfC,�
2

x). (17)

We then optimize q(C)
QF

f=1
q(xf )q(zf ).687

Mean-Field Variational Bayes is a coordinate ascent algorithm on the parameters of each ap-688

proximate marginal distribution. To derive the update equations for each step, we begin with the689

following (Murphy, 2012):690

log q(xf ) Eq(C)q(zf )[log p(C, xf , zf |ef )] + const

log q(zf ) Eq(C)q(xf )
[log p(C, xf , zf |ef )] + const

log q(C) Eq(xf )q(zf )[log p(C, xf , zf |ef )] + const

(18)

After simplifying, the new q(xf ) term is a Gaussian with mean given by equation (19) and constant691

variance692

µxf  
�2
eµCµzf + �2

xef
�2
e + �2

x
(19)

where µC and µz are the means of the current estimates of q(C) and q(z).693

For the update to q(zf ) in terms of log odds of zf we obtain:694

LPOzf  log
p(zf = +1)

p(zf = �1) + 2
µxfµC

�2
e + �2

x
. (20)

Similarly, the update to q(C) is given by:695

LPOC  log
p(C = +1)

p(C = �1) + 2
µxfµzf

�2
x

(21)
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Note that the first term in equation (21) – the log prior – will be replaced with the log posterior696

estimate from the previous frame (see Supplemental Algorithm S2). Comparing equations (21) and697

(5), we see that in the variational model, the log likelihood odds estimate is given by698

ˆLLOf = 2
µxfµzf

�2
x

(22)

Analogously to the sampling model we assume a number of updates nU reflecting the speed of699

relevant computations in the brain relative to how quickly stimulus frames are presented. Unlike700

for the sampling model, naively amortizing the updates implied by equation (22) nU times results701

in a stronger primacy e↵ect than observed in the data, since the Variational Bayes algorithm702

naturally has attractor dynamics built in. Allowing for an additional parameter ⌘ scaling this703

update (corresponding to the step size in Stochastic Variational Inference (Ho↵man et al., 2013))704

seems biologically plausible because it simply corresponds to a coupling strength in the feed-forward705

direction. Decreasing ⌘ both reduces the primacy e↵ect and improves the model’s performance.706

Here we used ⌘ = 0.05 in all simulations based on a qualitative match with the data. The full707

variational model is given in Algorithm S2.708

Integration to Bound (ITB) Model709

We implemented an ITB model in our simplified 3-variable hierarchical task model, C ! xf ! ef .710

The dynamics of the integrator model were nearly identical to equation (6), using the exact log711

likelihood odds, but with added noise:712

LPOf = LPOf�1(1� �) + LLOf + ✏ , (23)

where ✏ is zero-mean Gaussian noise with variance �2
✏ (Wong and Wang, 2006; Usher and McClel-713

land, 2001; Bogacz et al., 2006; Brunton et al., 2013; Drugowitsch et al., 2016). Whenever LPOf714

crosses the bound at ±B, it “sticks” to that bound for the rest of the trial regardless of further715

evidence. Not that in the unbounded case noise does not a↵ect the shape of the temporal weights716

(only their magnitude), but noise interacts with the bound to determine the shape as well as overall717

performance.718

Simulations in Figure S8a-c used �2
x = 0.1, ✏ = 0.35, � = 0, and B = 1.2. This replicates the719

finding of Kiani et al (2008) that bounded integration results in primacy e↵ects. Figure S8d-f were720

identical except for � = 0.1. These parameters were chosen by hand to match the magnitude and721

shape of the IS model’s temporal weights in the LSHC condition. For Figure S8g-i, we varied � as a722

function of the category information, obeying the arbitrarily chosen relationship � = 1�CI. In all723

three simulations, the model parameters were first simulated across the full space of category and724

sensory information to find the threshold performance curve at 70% correct. Subsequent analyses725

were based on points chosen to lie on the threshold performance curve, resulting in slightly di↵erent726

stimulus statistics for each model. This resulted in values of � = 0.09 in the LSHC condition and727

� = 0.35 in the HSLC condition for the ground-truth ITB model simulations.728

Ground-truth models729

To benchmark inference and as a reference for interpreting results, we simulated choices from two730

ground-truth models (IS and ITB) on each of two conditions (LSHC and HSLC). Both ground-731

truth models used parameters already described above, summarized again in Table 1, which ensured732

constant performance at 70% as well as a primacy e↵ect with shape � ⇡ �0.1 in the LSHC condition733

and a recency e↵ect with shape � ⇡ 0.1 in the HSLC condition for both models.734
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Table 1: Parameters of ground-truth models. SI= sensory information. CI= category information.
� = leak. S = samples per batch (IS mode only). B = bound (ITB model only). ✏ = integration
noise. T = decision temperature. � = lapse rate.

Inference of ITB model parameters735

The model we fit to subjects is a simple extension of the above ITB model in which the leak (�) is736

allowed to be negative. Per subject per condition, we used Metropolis Hastings (MH) to infer the737

joint posterior over seven parameters: the category prior (pC), lapse rate (�), decision temperature738

(T ), integration noise (✏), bound (B), leak (�), and evidence scale (s). The evidence scale parameter739

was introduced because although we can estimate the ground truth category information in each740

task (0.6 for HSLC and 0.9 for LSHC), the e↵ective sensory information depends on unknown741

properties of each subject’s visual system and will di↵er between the two tasks. Within each742

task, this mapping can be approximated by simply scaling the estimated signal per frame by the743

constant s. To predict a subject’s choices, the model thus “observed” signals equal to S/s, where744

S is the matrix of inferred signal strengths per frame defined earlier. (Using logistic regression, we745

explored plausible nonlinear monotonic mappings between S and e and found that none performed746

better than linear scaling). Given s, there is no need to additionally infer sensory information;747

in our models, changing the sensory information is equivalent to rescaling the observed signal for748

the purposes of computing log likelihood odds. Hence a single scaling parameter s captures both749

the e↵ective sensory information – which depends on each subject’s visual system – as well as the750

mapping from the e↵ective log odds per frame to the space of model observations (e). However, we751

did not include additional observation noise. We fixed the sensory information (which determines752

the value of �2
e during inference) in the model to 0.6 in the LSHC condition and 0.9 in the HSLC753

condition during fitting, such that any rescaling would be captured by s. The scale s was fixed to754

1 when fitting the ground-truth models, as there was no unknown mapping in those cases.755

Each trial, the model followed the noisy integration dynamics in (23), where LPO0 = log pC
1�pC

756

and LLOf was computed exactly conditioned on evidence S/s. After integration, the decision then757

incorporated a symmetric lapse rate and temperature:758

p(Choice = +1|LPOF ,�, T ) = �+ (1� 2�)� (LPOF /T ) ,

where �(a) is the sigmoid function, �(a) ⌘ (1 + exp(�a))�1. Note that if the bound is hit, then759

LPOF = ±B, but the temperature and lapse still apply. To compute the log likelihood for each760

set of parameters, we numerically marginalized over the noise, ✏, by discretizing LPO into bins of761

width at most 0.01 between �B and +B (clipped at 3 times the largest LPO reached by the ideal762

observer) and computing the probability mass of LPOf given LPOf�1, LLOf , and ✏. This enabled763

exact rather than stochastic likelihood evaluations within MH.764

The priors over each parameter were set as follows. p(pC) was set to Beta(2, 2). p(�) was set765

to Beta(1, 10). p(�) was uniform in [�1, 1]. p(s) was set to an exponential distribution with mean766

20. p(✏) was set to an exponential distribution with mean 0.25. p(T ) was set to an exponential767

distribution with mean 4. p(B) was set to a Gamma distribution with (shape,scale) parameters768

(2, 3) (mean 6). MH proposal distributions were chosen to minimize the autocorrelation time when769

sampling each parameter in isolation.770
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We ran 12 MCMC chains per subject per condition. The initial point for each chain was selected771

as the best point among 500 quasi-random samples from the prior. Chains were run for variable772

durations based on available shared computing resources. Each was initially run for 4 days; all773

chains were then extended for each model that had not yet converged according to the Gelman-774

Rubin statistic, R̂ (Gelman and Rubin, 1992; Brooks and Gelman, 1998). We discarded burn-in775

samples separately per chain post-hoc, defining burn-in as the time until the first sample surpassed776

the median posterior probability for that chain (maximum 20%, median 0.46%, minimum 0.1% of777

the chain length for all chains). After discarding burn-in, all chains had a minimum of 81k, median778

334k, and maximum 999k samples. Standard practice suggests that R̂ < 1.1 indicates good enough779

convergence. The slowest-mixing parameter was the signal scale (s), with R̂ = 1.13 in the worst case.780

All R̂ values for the parameters relevant to the main analysis – �, B, and � – indicated convergence781

([min,median,max] values of R̂ equal to [1, 1.00335, 1.032] for �, [1.0005, 1.00555, 1.0425] for B, and782

[1, 1.0014, 1.0178] for all � values in ablation analyses.783

Estimating temporal slopes and ablation indices implied by model samples784

To estimate the the shape of temporal weights implied by the model fits, we simulated choices from785

the model once for each posterior sample after thinning to 500 samples per chain for a total of 6k786

samples per subject and condition. We then fit the slope of the exponential weight function, �, to787

these simulated choices using logistic regression constrained to be an exponential function of time as788

described earlier (equation (8)). This is the �fit plotted on the y-axis of Figure 5b. For the ablation789

analyses, we again fit � to choices simulated once per posterior sample of model parameters, but790

setting � = 0 in one case or (B =1, ✏ = 0) in the other.791

We used a hierarchical regression analysis to compute “ablation indices” per subject and per
parameter. The motivation for this analysis is that subjects have di↵erent magnitudes of primacy
and recency e↵ects, but the relative impact of the leak or bound and noise parameters appeared
fairly consistent throughout the population (Supplemental Figure S13), so a good summary index
measures the fraction of the bias attributable to each parameter, which directly relates to the slope
of a regression line through the origin. To quantify the net e↵ect of each ablated parameter per
subject, we regressed a linear model with zero intercept to �fit versus �true. If an ablated parameter
has little impact on �, then the slope of the regression will be near 1, so we use 1 minus the linear
model’s slope as an index of the parameter’s contribution. The regression model accounted for
errors in both x and y but approximated them as Gaussian. Defining m to be the regression slope
for the population and mi to be the slope for subject i, the regression model was defined as

�m ⇠ half-cauchy(0, 5) (24)

mi ⇠ N (m,�m) (25)

�true,i ⇠ N (xi,�x,i) (26)

�fit,i ⇠ N (ximi,�y,i) . (27)

This model was implemented in STAN and fit using NUTS (Carpenter et al., 2017). Equations792

(24) and (25) are standard practice in hierarchical regression – they capture the idea that there is793

variation in the parameter of interest (the slope m) across subjects which is normally distributed794

with unknown variance, but that this variance is encouraged to be small if supported by the data.795

The variable xi is the “true” x location associated with each subject, which is inferred as a latent796

variable to account for measurement error in both x (26) and y (27) dimensions. Measurement797

errors in �true, �x,i were set to the standard deviation in � across bootstraps. Measurement errors798

in �fit, �y,i were set to the standard deviation of the posterior predictive distribution over � from799

simulated choices on each sample of model parameters as described above.800
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Sensory Information and Category Information in Pre-
vious Literature

In this section we justify our categorization of previous studies’ stimuli into the low-sensory/high-
category information (LSHC) or high-sensory/low-category information (HSLC) regime in
relation to Figure 1 and Table S1. While category information and sensory information are
well defined in our model, in the brain they will depend on the nature of the intermediate
variable x relative to e and C, and those relationships depend on the sensory system under
consideration. For instance, a high spatial frequency grating may contain high sensory infor-
mation to a primate, but low sensory information to a species with lower acuity. Similarly,
when “frames” are presented quickly, they may be temporally integrated with the e↵ect
of both reducing sensory information and increasing category information. Therefore, the
placement of each study in the sensory vs category information space is our best estimate,
and we generally only distinguish between high and low along each dimension. Note that for
the orientation discrimination task that we designed, we report the within-subject change

in weights from one task condition to the other, which overcomes the di�culties described
above: while we cannot estimate the absolute values of sensory and category information
due to our limited knowledge about the nature of the human sensory system’s representa-
tion even in our task, our two-staircase task design acting on the two kinds of information
separately guarantees that there will be a change in both sensory information and category
information between the LSHC and HSLC conditions while performance is kept constant.
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Studies finding a primacy e↵ect

Kiani et al. (2008) studied the classic motion direction discrimination task in which a monkey
views a dynamic random dot motion stimulus with a certain percentage of “coherent” dots
moving together and the rest moving randomly (Kiani et al., 2008; Newsome and Pare, 1988).
Monkeys were trained to categorize the direction of motion as predominantly leftward or
rightward. Since the direction of the coherently moving dots (the signal) does not change
over time within a trial, this stimulus contains high category information. Since the motion
direction is di�cult to perceive for any motion frame, it contains low sensory information
(Kiani et al., 2008).

Nienborg et al. (2009) developed a task in which subjects viewed a disc with varying
binocular disparity. The disc moved back and forth relative to a reference plane (the sur-
rounding ring), changing every 10ms, at a rate too high for the macaques’ (and humans’)
binocular system to resolve, resulting in a percept of a jittering cloud of dots which was
located slightly in front of or behind the surrounding ring and blurred in depth (Nienborg –
private communication). After 200 frames presented over 2 seconds, subjects judged whether
the center disc was in front or behind the reference plane. Since the location of the perceived
dot cloud is relatively stable, but itself uncertain with respect to the reference, this stimulus
contains high category and low sensory information (Nienborg and Cumming, 2009).

Studies finding a recency e↵ect or flat weighting

In two similar studies by Wyart et al. (2012) and by Drugowitsch et al. (2016), human
participants viewed a sequence of eight clearly visible oriented gratings presented for at least
250ms each. Participants reported whether, on average, the tilt of the eight elements fell
closer to the cardinal or diagonal axes. These tasks contain high sensory information since
for a subject there is little uncertainty about the orientation of any one grating. However
they contain low category information since the orientation of any one grating provides only
little information about the correct choice (Wyart et al., 2012; Drugowitsch et al., 2016).

Brunton et al. (2013) studied both a visual task and an auditory task where subjects
were trained to indicate whether they saw/heard more flashes/clicks on the left or right side
of the midline. These task stimuli contain high sensory information since each flash/click is
high contrast/loud – well above subjects’ detection thresholds. However, they contain low
category information since each flash/click contains only little information about the correct
choice (Brunton et al., 2013).

Stimulus details

The stimulus was constructed from white noise that was then masked by a kernel in the
Fourier domain to include energy at a range of orientations and spatial frequencies but
random phases (Beaudot and Mullen, 2006; Nienborg and Cumming, 2014; Bondy et al.,
2018). The Fourier-domain kernel consisted of a product of two probability density functions
(PDFs): a von Mises PDF over orientation, and a Rician PDF over spatial frequency. This
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is best expressed using polar coordinates in the Fourier domain:

K⇢✓ = vonMises(✓;µ✓,)Rician(⇢;µ⇢, �⇢)

where ✓ is the angular coordinate and ⇢ is the spatial frequency coordinate. After trans-
forming back from the Fourier domain to an image, we applied a soft circular aperture with
a hole cut out in the center for the fixation cross. The full pixel-space mask is defined by
the equation

M = exp(�4⇢̂2)| {z }
Gaussian aperture

⇥ (1 + erf(10⇥ (⇢̂� ⌧ap/wim)))| {z }
Center cutout for fixation cross

where ⇢̂ is the normalized Euclidean distance to the center of the image (⇢̂ = 0 at the center,
and ⇢̂ =

p
2 at the corners), and erf is the Error Function. ⌧ap controlled the width of the

central cutout, and wim is the total width of the stimulus. To summarize, each stimulus
frame, I, was generated according to

I = M ⌦ F�1 [F [W ]⌦K⇢✓]

where F is the 2D discrete Fourier transform, ⌦ is element-wise multiplication of each pixel,
and W is white noise. Images were displayed using Psychtoolbox on a 1920x1080px 120
Hz monitor with gamma-corrected luminance (Brainard, 1997). Using an 8-bit luminance
range (0 to 255), each frame was normalized to 127± c where c is a contrast parameter. All
stimulus parameters are summarized in table S2.
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Algorithms

Algorithm S1 Importance Sampling (IS) model for evidence integration

LPO log p(C=+1)
p(C=�1) . initialize log posterior odds to log prior odds

for f = 1 to F do
for n = 1 to nU do

pC  (1 + exp(�LPO))�1
. current posterior that C = +1

p̂(x) pCN (+1, �2
x) + (1� pC)N (�1, �2

x) . Mixture of Gaussians prior on x

Q(x) p̂(x)p(ef |x)
for s = 1 . . . S do

x
(s) ⇠ Q(x) . sensory sample from current posterior

p
(s)
+  p(x(s)|C = +1) . contribution of each sample to C = +1 pool

p
(s)
�  p(x(s)|C = �1) . contribution of each sample to C = �1 pool

w
(s)  

�P
c p(x

(s)|C = c)pf�1(C = c)
��1

. (unnormalized) weight of each
sample

end for
w  w/

P
s0 w

(s0)
. (optionally) normalize weights

p
tot
+  

P
s p

(s)
+ w

(s)
. aggregate evidence for C = +1

p
tot
�  

P
s p

(s)
� w

(s)
. aggregate evidence for C = �1

ˆLLOf  log ptot+ � log ptot�
LPO LPO(1� �/nU) + ˆLLOf/nU . equations (15,6) amortized for nU updates

end for
end for

Algorithm S2 Variational Bayes (VB) model for evidence integration

LPO log p(C=+1)
p(C=�1) . initialize to log prior odds

for f = 1 to F do
µzf  2p(zf = +1)� 1 . initialize µzf to the prior
for n = 1 to nU do

µC  2(1 + exp(�LPOC))�1 � 1 . convert log-odds to mean of C

µxf
 �2

eµCµzf+�2
xef

�2
e+�2

x
. equation (19)

LPOzf  log p(zf=+1)
p(zf=�1) + 2

µxf µC

�2
x+�2

e
. equation (20)

µzf  2(1 + exp(�LPOzf )
�1 � 1 . convert log-odds to mean of zf

ˆLLOf  
2µxf µzf

�2
x

. Equation (22)

LPO LPO(1� �/nU) + ⌘ ˆLLOf/nU . Equations (6) and (21) amortized for nU

updates with update strength ⌘
end for

end for
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Optimal bias correction

A leak term approximates optimal inference in a changing environment when total evidence is
weak (Glaze et al., 2015), but each trial of our task is stationary. One might therefore expect
that a leak term, or � > 0, would impair the model’s performance in our task. On the other
hand, we motivated the leak term by suggesting that it could approximately correct for the
confirmation bias. Under this second interpretation, one might instead expect performance
to improve for some � > 0, especially for conditions where the confirmation bias was strong.

We investigated the relationship between the leak (�) and model performance. First,
we simulated the importance sampling model with � = 0.1 and � = 0.5 and compared its
performance across the space of category and sensory information (Figure S6a-b). We found
that in the LSHC regime where the confirmation bias had been strongest, the larger value
of � counteracts the bias and leads to better performance, but in the HSLC regime where
there had been no confirmation bias, the optimal � is zero (Figure S6c). We thus see that
the optimal value of � depends on the task statistics, i.e. the balance of sensory information
and category information: the stronger the primacy e↵ect or confirmation bias, the higher
� must be to correct for it (Figure S6d). Analogous results were found for the variational
model (Figure S7).

We next asked what the e↵ect would be on the model’s temporal weights if it could
utilize the best � for each task. We found that the ��optimized model displayed near-flat
weights across the entire space of tasks (Figure S6e). Our data therefore imply that either
the brain does not optimize its leak to the statistics of the current task, or that it does so
on a timescale that is slower than a single experimental session (roughly 1hr, Methods).

Detailed comparison with integration to bound (ITB)

The primary alternative explanation for primacy e↵ects in fixed-duration integration tasks
proposes that subjects integrate evidence to an internal bound, at which point they cease
paying attention to the stimulus (Kiani et al., 2008). Because the bound is crossed at di↵erent
times on di↵erent trials, the average weight subjects give to each frame is a decreasing
function of the frame number, i.e. a primacy e↵ect. We implemented an integration-to-
bound (ITB) observer in our hierarchical inference framework and replicated the observation
that bounded and noisy integration results in primacy e↵ects (Figure S8a-b). Importantly,
this mechanism depends only on the net log likelihood per frame regardless of how it is
partitioned into category information and sensory information. Classic ITB therefore always
predicts the same temporal weights as long as performance is held constant. ITB does,
however, predict a change in temporal weighting as a function of task di�culty, because
the bound is hit earlier in a trial when evidence is stronger (Figure S8c). However, this
explanation is unlikely to explain the changes seen on our data given that our experiment
used a continuous staircase procedure which sustained performance near 70% in both tasks.

We next investigated the behavior of a leaky, noisy, and bounded integrator. While
the addition of a leak term shifts the e↵ective weights in the direction of a recency e↵ect,
we again see no systematic changes across the space of tasks (Figure S8d-f). In order to
produce di↵erent regimes of temporal biases at fixed performance levels, then, either the
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bound, the leak term, or both must change as a function of category information and sensory
information. We next simulated a leaky ITB model in which the leak term, �, varied with
category information: small � in the LSHC regime and large � in the HSLC regime. This
change is plausible because subjects may adopt a strategy that discounts past evidence more
when the world appears more volatile (Glaze et al., 2015). This model is dominated by
bounded integration in the LSHC condition and by leaky integration in the HSLC condition,
qualitatively reproducing the trends in our data (Figure S8g-i).

There are thus two families of models in qualitative agreement with our subjects’ data:
hierarchical inference with a confirmation bias, or bounded integration with a leak that
depends on the task. Both model families explain recency e↵ects as the result of leaky
integration but di↵er in their account of primacy e↵ects. We reasoned that these models
might be distinguished using data from our LSHC condition: whereas they agree on the sign
and magnitude of the temporal bias as measured by an exponential fit �, they make divergent
predictions for subjects’ confidence, determined by the magnitude of the integrated log odds
at the end of a trial. According to the confirmation-bias mechanism, subjects should count
all evidence in a trial but over-count early evidence, inflating their confidence relative to an
unbiased integrator. According to the ITB mechanism, however, the magnitude of the bound
itself sets an upper limit on log odds, and thus an upper limit on confidence, truncating the
range of confidences relative to an unbiased integrator. Because we did not ask subjects to
report confidence in their choices, these predictions cannot be tested directly. However, this
line of reasoning suggests that these mechanisms may nonetheless be distinguished by fitting
models to subjects’ data; confident choices are predictable choices.

We first tested whether the two primacy mechanisms – a confirmation bias or bounded
integration – are quantitatively distinguishable in ground-truth data. We simulated choices
from the ground-truth IS and ITB models already described (the models plotted in Figure
4c-e and Figure S8g-i, respectively). The models were matched both in performance and in
their temporal biases, exhibiting a primacy e↵ect (� ⇡ �0.1) in the LSHC condition and a
recency e↵ect (� ⇡ +0.1) in the HSLC condition. Due to the internal stochasticity of the IS
model, it is infeasible to infer its parameters directly. However, we found that an ITB model
with a large bound and negative leak (� < 0) is functionally indistinguishable from the IS
model (Figure S10). Recall that the leak term, �, was introduced in equation (6) and explains
recency e↵ects when � > 0. When � < 0, this has the opposite e↵ect of amplifying already
accumulated evidence, leading to a primacy e↵ect due to a mechanism that is functionally

equivalent to a confirmation bias (Busemeyer and Townsend, 1993; Bogacz et al., 2006).
The key question thus becomes: are the primacy e↵ects in our data better explained by a
negative leak term or by bounded integration? These mechanisms not mutually exclusive
and in principle both may contribute. We therefore fit a single ITB model with �1 < � < 1
to each condition. By fitting a single model that contains both mechanisms as special
cases, we compare them on equal terms. In order to estimate the relative contribution of
each mechanism, we used MCMC sampling to infer the full posterior over all parameters
(Methods).

We verified that these two distinct parameter regimes – negative leak or bounded inte-
gration – are distinguishable in ground-truth data. Indeed, in the case of the IS model, the
posterior concentrated on unbounded integration with � < 0 in the LSHC condition and
unbounded but leaky integration in the HSLC condition. In the case of ground truth data
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from the ITB model in Figure S8g-i, the posterior concentrated around the ground truth
parameters (Figure S11).

Simulation of a larger hierarchical inference model

We simulated the hierarchical sampling-based inference model of Haefner et al. (2016). Unlike
our reduced C ! x ! e models in the main text with only scalar variables, the model of
Haefner et al. (2016) decomposes as C ! G! X! I where I is an entire image, and X and
G represent entire populations of V1 and V2 neurons respectively. We will refer to this as
the HBF16 model in what follows. Trying to better understand inference dynamics and the
source of primacy e↵ects in the HBF16 inspired the present work. In particular, the original
model was shown to produce primacy e↵ects in a task which we would now categorize as
having low-sensory and high-category information.

The original HBF16 model was run on a coarse orientation discrimination task between
low-contrast vertical and horizontal gratings embedded in white noise with variance 1. As
in our reduced models in the main text, we adapted the generative model to the statistics
of the stimuli as we transitioned from LSHC to HSLC conditions. In the main text, we
converted sensory information into the variance of two Gaussians centered at ±1. In the
HBF16 model, sensory information is instead determined by the contrast of a stimulus with
fixed noise. We therefore made no change to the generative structure of X ! I because
higher contrast images immediately results in higher signal to noise in X. We manipulated
category information in the stimulus, as in the models in the main text, by randomly flipping
the orientation of each of the 10 frames per trial with probability pmatch. Lower category
information in the stimulus requires a weaker coupling from G to C, parameterized by . For
each V2-like grating element Gi with preferred orientation ✓i, the generative model couples
C to G as follows:

p(Gi = 1|C) /
(
exp( cos(✓i � ✓C=1)) if C = 1

exp( cos(✓i � ✓C=2)) if C = 2
(1)

where ✓C=c is the true grating orientation for category c 2 {1, 2}. Note that each Gi is
binary, indicating the presence or absence of a grating element (see Haefner et al. (2016)
for additional details). Clearly, as  goes to zero, C and G become independent, and as
 gets large, C uniquely determines which grating orientation is present, and, conversely,
samples of G strongly determine C. Thus  controls the strength of the positive feedback
or confirmation bias in this model.

The strength of the coupling between C and G is naturally quantified with the ROC of
the two cases of von Mises distributions in (1). As in the main paper, this quantifies category
information (in the generative model rather than in the stimulus) on a scale between 0.5 and
1. Denoting this function as p = roc() and its inverse as  = roc�1(p), we set  in our
simulations to roc�1(pmatch)/roc�1(0.9). This way,  scaled appropriately with the amount
of information in the stimulus, and  = 1 when category information is 0.9 to approximately
the original parameter regimes of HBF16.

We additionally extended the model of HBF16 to include a leak parameter in the update
to the log odds of C, and set the leak to 0.01 in the simulations (equivalent to � = 0.08 in

7

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2020. ; https://doi.org/10.1101/440321doi: bioRxiv preprint 

https://doi.org/10.1101/440321
http://creativecommons.org/licenses/by-nc-nd/4.0/


the main paper where we divided � by the number of updates per frame). We simulated
200 trials from the HBF16 model across a range of contrast values from 0 to 10 and pmatch

values ranging from 0.51 to 0.99. We then smoothed the resulting performance grid and
plotted the results in Figure S9a, and recapitulates the patterns seen in our reduced models.
We selected two points in this space – corresponding to one LSHC and one HSLC condition
– for 5000 additional trials. We then computed temporal weights using AR2-regularized
logistic regression. Results are plotted in Figure S9b, showing a transition from primacy in
the LSHC condition to recency in the HSLC condition. (Note that without any leak, the
HBF 16 model only transitions to flat weights in the HSLC condition but requires higher
sensory information for equivalent LSHC performance, exactly as in our reduced models;
not plotted). This demonstrates that our insights from the reduced hierarchical inference
models used in the main text can generalize to larger hierarchical inference settings with a
large number of variables and nontrivial dynamics.

Additional model-fitting details

To determine whether subjects’ strategies were better described by confirmation bias dynam-
ics or bounded integration, we initially sought to use standard model comparison methods.
Ideally, Bayesian model comparison is done by computing Bayes Factors, or the ratio of the
marginal likelihoods of the data under two models being compared (Bernardo and Smith,
2000). The marginal likelihood may be estimated by procedures similar to cross-validation
(Fong and Holmes, 2019), which requires repeatedly performing full Bayesian inference over
model parameters conditioned on random splits or subsets of the full dataset. For this to
be feasible, the “inner loop” of Bayesian inference must be e�cient. The primary barrier to
this approach is the fact that the likelihood in the IS model is only known implicitly through
stochastic simulations. Simulation-based inference methods are an active area of research
(van Opheusden et al., 2020; Greenberg et al., 2019; Lueckmann et al., 2018; Papamakarios
and Murray, 2016; Sisson et al., 2018; Acerbi, 2020).

For all of our models, the likelihood of the subject’s choice on trial t, written p(choicet|St, ✓)
for stimulus sequence St and model parameters ✓, is the Bernoulli probability of the ob-
served choice given the model’s confidence on the final frame, marginalizing over the internal

stochasticity of the model. That is, for a fixed stimulus St and parameters ✓, the model may
output a di↵erent final log odds, LPOF , on multiple runs. The likelihood can be written

p(choicet|St, ✓) =

Z 1

�1
p(choicet|LPOF , ✓)| {z }

(i)

p(LPOF |St, ✓)| {z }
(ii)

dLPOF .

The first term, (i), is the lapse- and temperature-adjusted probability of making a choice
given a final confidence or belief value of LPOF . The second term, (ii), depends on the
internal stochasticity of the model. In the case of ITB models, all internal stochasticity is due
to the integration noise ✏, and can be numerically marginalized by internally maintaining a
distribution of possible log posterior odds each frame, and updating that distribution for each
frame, computing a new distribution, p(LPOf |LPOf�1,LLOf , ✓), taking into account the
total probability mass that has crossed the bounds ±B. This is precisely how we estimate the
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likelihood for the Metropolis Hastings sampler used in the main text. We cannot, however,
apply the same trick to the IS model. Whereas the ITB models’ internal stochasticity is
simply additive Gaussian noise with variance ✏2, internal stochasticity in the IS model comes
from the location of generated samples in the SNIS algorithm. If drawing S = 5 samples per
update, as in our main simulations, then marginalization would require integrating over R5.
In general, the marginalization problem grows exponentially with S, which is a parameter
we would in principle like to infer and may be large. As a final comment before discussing
alternatives, we note that SNIS with S samples can be viewed as implicitly defining a 1-
dimensional distribution over x after S � 1 marginalization steps (Cremer et al., 2017);
however, this distribution is not known in closed form (or whether it has a closed form), and
we were unable to derive a sub-exponential-time expression for numerically approximating
it.

An cheaper alternative approach to model comparison, compared to performing full
Bayesian inference in an inner-loop, is to search for the maximum likelihood or maximum a
posteriori estimate of the parameters (MLE or MAP), then approximately correct for biases
by adjusting the model score by the number of parameters (as in AIC) or the number of
parameters and amount of data (as in BIC). Search methods with a stochastic objective
are in general more mature than inference methods with stochastic likelihood evaluations,
suggesting this may be a promising approach. It requires two ingredients: a method to get
unbiased (but possibly variable) estimates of the log likelihood, and a method to search for
the maximum of a noisy objective. We implemented the Inverse Binomial Sampling (IBS)
method of van Opheusden et al (2020) to get unbiased but noisy log likelihood estimates
. Briefly, IBS estimates the likelihood of each trial by counting the number of repeated
(stochastic) simulations it takes before the model makes the same choice as the subject. Let
kt be the number of simulations before the first match, then IBS estimates the log likelihood
for that trial as

L̂Lt =  (1)�  (kt) , (2)

where  is the digamma function (van Opheusden et al., 2020). Crucially, L̂Lt is an unbiased

estimator of the true LLt. Other naive methods derived by considering how to estimate the
likelihood directly (as opposed to the log likelihood) result in biases after taking the log.
The full log-likelihood estimate is given by L̂L =

PT
t=1 L̂Lt. Its variance grows with the

number of trials, so we averaged together
p
T repeats of the IBS estimator per evaluation.

With an unbiased estimator of the log likelihood in hand, we used Bayesian Adaptive Direct
Search (BADS) to search for the maximum likelihood parameters (Acerbi and Ma, 2017).
We began with a quasi-random grid of 5k points sampled from the prior over each parameter
and evaluated their estimated log likelihood. For each BADS run, we perturbed the set of
evaluated log likelihoods by adding Gaussian noise proportional to the empirical standard
deviation of L̂L (i.e. Thompson Sampling), then selected the maximum as the starting point.
We re-ran this procedure for at least 20 and at most 1000 searches (stopping when enough
runs agreed on the value of L̂L at the MLE). Using the best estimate of L̂L for each model
and condition, re-estimated with 10

p
T repeats of IBS, we computed AIC:

AIC = �2L̂L+ 2P ,

where P is the number of parameters in the model. Because L̂L is stochastic with known
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empirical variance, we plotted AIC for each model fit to ground-truth data with error bars
in Figure S10.

Ultimately, our conclusion from this AIC-based comparison on ground-truth models was
two-fold. First, although we were able to recover the ground-truth parameters in each
case, this method gives no sense of the uncertainty over those parameters, which is crucial
for answering the question posed in the main text of the extent to which either of two
mechanism produces primacy e↵ects. Second, we observed that although the standard ITB
model is distinguishable from the IS model with the constraint of a positive leak (0 < � < 1)
enforced, allowing negative leak (�1 < � < 1) it is no longer distinguishable (Figure S10).
In other words, this means that a negative leak is functionally indistinguishable from the IS
model in the LSHC condition. Further, the same ITB model family with a positive leak is
functionally indistinguishable from the IS model in the HSLC condition. Taken together, this
implies that the key question of whether primacy e↵ects are due to bounded integration or
due to self-reinforcing dynamics when integrating LPO can be answered even more directly
and more fairly by comparing parameter regimes within the ITB model family with negative
leak rather than comparing across model families of IS and ITB. For this reason, we pursued
full inference over ITB model parameters in the main text rather than fitting a point estimate
of the IS model directly to data.
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Example study Justification for placement in task
space (Figure 1, color-coded)

Suggested stimulus manipulation
to change weighting (color-coded)

Brunton et al.
(2013), Raposo et
al. (2014)

Each click is perceptually clear
but only weakly predictive of
which side has the higher rate.

Make clicks softer or embed them
in noise and increase di↵erence in
rates between left and right side.

Wyart et al.
(2012), Drugow-
itsch et al. (2016)

Orientation of each frame is clear
but only weakly predictive of
which “deck” the orientations
were drawn from.

Decrease contrast of each frame
or increase pixel noise and reduce
variance of orientations within
each deck.

Kiani et al. (2008) Net motion is weak (low coher-
ence) and constant over a trial.

Increase motion coherence but
vary net motion direction across
stimulus frames within a trial.

Nienborg et al.
(2009)

Percept is of a jittering cloud of
dots whose depth is close to fixa-
tion point.

Increase the distance between
cloud and fixation point in depth;
vary distance across stimulus
frames at a rate resolvable by
depth perception

Table S1: Justification of placement of example prior studies in Figure 1c and description
of stimulus manipulations that will move it to the opposite side of the category–sensory–
information space. Each manipulation corresponds to a prediction about how temporal
weighting of evidence should change from primacy (red) to flat/recency (blue), or vice versa,
as a result.
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Parameter Description Values (Units)
µ⇢ mean spatial frequency 6.90 (cycles per degree)
�⇢ spread of spatial frequency 3.45 (cycles per degree)
 (inverse) spread of orientation energy 0    0.8
c image contrast 22
⌧ap width of central annulus cutout 25 (pixels) or 0.43 (�)
wim full image width & height 120 (pixels) or 2.08 (�)

Table S2: Stimulus parameters.
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Figure S1: Stimulus timing for each trial in our visual discrimination task
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Figure S2: Same as Figure 3d in the main text, comparing slope of w by constraining w a
linear (left) or an exponential (right) function of time. Using the linear fit, 10 of 12 subjects
individually have a significant increase in slope (p < 0.05, bootstrap). Using the exponential
fit, 9 of 12 subjects individually have a significant increase in slope (p < 0.05, bootstrap).
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Figure S3: Cross-validation selects linear or exponential shapes for temporal weights, com-
pared to both unregularized and AR2-regularized logistic regression. Panels show 20-fold
cross-validation performance of four methods to fit evidence-weighting profiles, separated
by task type and by subject. All values are relative to the log-likelihood, per fold, of the
unregularized model. Error bars show standard error of the mean di↵erence in performance
across folds of shu✏ed data. “Unregularized LR” refers to standard logistic regression with
no regularization. “Regularized LR” refers to the ridge- and AR2-regularized logistic regres-
sion objective, where the hyperparameters were chosen to maximize cross-validated fitting
performance separately for each subject. “Exponential” is is the 3-parameter model where
weights are an exponential function of time (equation (8) plus a bias term). Similarly, the
“Linear” model constrains the weights to be a linear function of time as in equation (9), plus
a bias term.
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Figure S4: Same as Figure 3a-c in the main text, but with no regularization applied to
logistic regression for individual subjects. Both here and in the main text, the “combined”
weights are computed using the un-regularized individual weights.
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Figure S5: In both models, larger � increases the prevalence of recency e↵ects across the
entire task space. Panels are as in Figure 4 in the main text. a-c sampling model with
� = 0. d-f sampling model with � = 0.1. g-i sampling model with � = 0.2. j-l variational
model with � = 0. m-o variational model with � = 0.1. p-r variational model with � = 0.2.
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Figure S6: Optimizing performance with respect to � (see also Figure S7). a) Sampling
model performance across task space with S = 5 and � = 0.5 (compare with Figure 4c in
which � = 0.1). b) Di↵erence in performance for � = 0.5 versus � = 0.1. Higher � improves
performance in the upper part of the space where the confirmation bias is strongest. c)
Optimizing for performance, the optimal �⇤ depends on the task. Where the confirmation
bias had been strongest, optimal performance is achieved with a stronger leak term. d)
Model performance when the optimal �⇤ from (c) is used in each task. e) Comparing the
ideal observer to (d), the ideal observer still outperforms the model but only in the upper
part of the space. f) Temporal weight slopes when using the optimal �⇤ are flat everywhere.
The models reproduce the change in slopes seen in the data only when � is fixed across tasks
(compare Figure S5).
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Figure S7: Simulation results for optimal leak (�) for two further model variations, panels
as in Figure S6. a-f Variational model results. As in the sampling model, we see that
the optimal value of �⇤ increases with category information, or with the strength of the
confirmation bias. h-l Sampling model results with S = 1 (in the main text and Figure S6
we used S = 5). Since the sampling model without a leak term approaches the ideal observer
in the limit of S ! 1, the optimal �⇤ was close to 0 for much of the space in the main
text figure. Here, by comparison, �⇤ > 0 is more common because the S = 1 model is more
biased.
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Figure S8: Simulation of bounded integration (ITB) model. a) Performance of an ITB model
is not di↵erentially modulated by sensory and category information. b) ITB consistently
produces primacy e↵ects, as in (Kiani et al., 2008). c) The primacy e↵ect becomes more
extreme in regions where evidence is stronger. d-f) As in (a-c), but with an additional leak
term, resulting in less extreme primacy e↵ects and a transition to recency for di�cult tasks,
but no transition from primacy to recency along the iso-performance contour. (Also note
the departure from monotonic exponential-like weight profiles). g-i) We now vary the leak
term, �, as a function of category information. This reproduces the qualitative transition
from primacy in LSHC to recency in HSLC. As measured by an exponential fit (�), slopes
are matched to those in the confirmation bias models (Figure 4d,g).
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Figure S9: Simulation results on the larger model of Haefner et al. (2016). a) Performance
as a function of sensory information (grating contrast) and category information (probability
that each frame matches the trial category). White line is iso-performance contour at 70%,
and dots correspond to LSHC and HSLC parameter regimes plotted in (b). Simulation
details in the Supplemental Text. b) Temporal weights from LSHC and HSLC simulations
corresponding to colored points in (a), normalized in each condition so the weights have
mean 1. As in the reduced models in the main text, we see a transition from primacy to
recency.
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ideal
ITB

ITB (-)
TruthIS

Figure S10: Results of direct model comparison between IS model and ITB model(s) fit to
ground-truth data. We employed methods to search the log likelihood landscape of each
model despite the stochastic likelihood evaluations of the IS model (van Opheusden et al.,
2020; Acerbi and Ma, 2017). Lower AIC indicates better fit. An ideal integrator (gold)
and ground-truth (gray) values serve as upper- and lower-bounds, respectively, on plausible
AIC values. In all cases, the best fitting model recovered parameters that are as good as
the ground truth. The standard ITB model (with positive leak enforced) is distinguishable
from the IS model in the LSHC simulation (top row). However, an extended ITB model
that allows for negative leak (“ITB (-)”, purple), fits all data in all conditions as well as the
ground-truth. For this reason, we state in the main text that a negative leak is functionally
indistinguishable from the true IS model. We pursued parameter comparison within this
extended ITB (-) model class, rather than model comparison between IS and ITB, in the
main text.
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Figure S11: Box and whisker plots of inferred parameter values for each of 12 subjects as
well as the ground truth models (IS and ITB). Each parameter and subject has two fits,
one for the LSHC condition (lower/red) and one for the HSLC condition (upper/blue). Thin
lines are 95% posterior interval, thick lines are 50% interval, and points are posterior median.
Parameter names are as in the main paper, restated here: pC = prior over categories, � =
symmetric lapse rate, T = decision temperature, s = signal scale (fixed to 1 for ground truth
models), � = leak, B = bound, ✏ = noise.
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ITB LSHC IS LSHC

ITB HSLC IS HSLC

Figure S12: Recovery of true temporal weight slopes (�) and ablations on ground-truth
models. White bars (“true”) are bootstrapped (�) values on the ground-truth choices. Black
bars (“full”) are (�) values implied by simulating choices from the full inferred model. Green
and purple bars are (�) values either after ablating the leak or after ablating the bound and
noise, respectively, as described in Methods of the main text. In the ITB LSHC panel, note
that ablating the leak has little e↵ect, but ablating the bound reverse the e↵ect to recency;
this is consistent with the ground-truth mechanism: primacy due to bounded integration
rather than a negative leak. In contrast, the IS LSHC primacy e↵ect is completely destroyed
by ablating the (negative) leak but una↵ected by ablating the bound. Taken together,
these ITB LSHC and IS LSHC simulations suggest we can identify which mechanism is
responsible for primacy e↵ects. In both HSLC panels (bottom row), ablating the (positive)
leak term has the strongest e↵ect, destroying recency in the IS case and reversing the e↵ect to
primacy in the ITB case, since the resulting model is purely a bounded integrator. Ablating
the bound in the ITB HSLC case leaves the leak unmitigated, resulting in an even stronger
primacy e↵ect.
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Fit vs true   , all subjects
Parameter-ablated    values and regressions

LSHC HSLCa) b) c)

Figure S13: Additional information on model fits and ablation regressions. a) Identical to
Figure 5b in the main text, but zoomed out to show outlying subjects as well. The diamond
symbol in (a) and lime green borders in (b-c) indicate the one identified outlier. b) As
in (a), this shows the model’s temporal slope (�) on the y-axis versus the subject’s actual
temporal slope on the x-axis, but with either the leak parameter ablated (green triangles) or
the bound and noise parameters ablated (purple squares). Each subject appears as 2 points
that share an x-coordinate (slightly jittered for for visualization), plotted as mean±68%
confidence intervals. The fact that � is near 0 when the leak term is ablated implies that the
leak term is the primary driver of primacy e↵ects in the LSHC condition. Population-level
regression slope (“m” from equation (25)) mean and 65% error bars are shown as lines with
shading. c) Same as (b) but for the HSLC condition. All subjects except the one outlying
subject (lime green border) had a recency e↵ect which disappears or is reversed to primacy
when the leak is ablated (green points).
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Figure S14: Temporal weight slopes (�) and ablations, broken out by individual subject.
White bars (“true”) are bootstrapped �data values on the subject’s choices. Black bars
(“full”) are �fit values implied by simulating choices from the full inferred model. Green
and purple bars are �fit values either after ablating the leak or after ablating the bound and
noise, respectively, as described in Methods of the main text.
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