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. Abstract

> Human decisions are known to be systematically biased. A prominent example of such a bias
3 occurs when integrating a sequence of sensory evidence over time. Previous empirical studies differ
4+ in the nature of the bias they observe, ranging from favoring early evidence (primacy), to favoring
s late evidence (recency). Here, we present a unifying framework that explains these biases and
6 makes novel psychophysical and neurophysiological predictions. By explicitly modeling both the
7 approximate and the hierarchical nature of inference in the brain, we show that temporal biases
s depend on the balance between “sensory information” and “category information” in the stimulus.
o Finally, we present new data from a human psychophysics task that confirms a critical prediction
10 of our framework showing that effective temporal integration strategies can be robustly changed
1 within each subject, and that allows us to exclude alternate explanations through quantitative
12 model comparison.

3 Introduction

12 Imagine a doctor trying to infer the cause of a patient’s symptoms from an x-ray image. Unsure
15 about the evidence in the image, she asks a radiologist for a second opinion. If she tells the
16 radiologist her suspicion, she may bias his report. If she does not, he may not detect a faint
17 diagnostic pattern. As a result, if the evidence in the image is hard to detect or ambiguous,
18 the radiologist’s second opinion, and hence the final diagnosis, may be swayed by the doctor’s
19 initial hypothesis. The problem faced by these doctors exemplifies the difficulty of hierarchical
20 inference: each doctor’s suspicion both informs and is informed by their collective diagnosis. If
21 they are not careful, their diagnosis may fall prey to circular reasoning. The brain faces a similar
2 problem during perceptual decision-making: any decision-making area combines sequential signals
23 from sensory brain areas, not directly from sensory input, just as the doctors’ consensus is based
24 on their individual diagnoses rather than on the evidence per se. If sensory signals in the brain
2 themselves reflect inferences that combine both prior expectations and sensory evidence, we suggest
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26 that this can then lead to an observable perceptual confirmation bias (Nickerson, 1998; Michel and
a7 Peters, 2020).

28 We formalize this idea in the context of approximate Bayesian inference and classic evidence-
20 integration tasks in which a range of biases has been observed and for which a unifying explanation
30 is currently lacking. Evidence-integration tasks require subjects to categorize a sequence of inde-
s pendent and identically distributed (iid) draws of stimuli (Gold and Shadlen, 2007; Bogacz et al.,
;2 2006). Previous normative models of evidence integration hinge on two quantities: the amount of
33 information available on a single stimulus draw and the total number of draws. One might expect,
s then, that temporal biases should have some canonical form in tasks where these quantities are
35 matched. However, existing studies are heterogeneous, reporting one of three distinct motifs: some
ss  find that early evidence is weighted more strongly (a primacy effect) (Kiani et al., 2008; Nienborg
37 and Cumming, 2009) some that information is weighted equally over time (as would be optimal)
s (Wyart et al., 2012; Brunton et al., 2013; Raposo et al., 2014), and some find late evidence being
30 weighted most heavily (a recency effect) (Drugowitsch et al., 2016) (Figure la,c). While there
20 are myriad differences between these studies such as subject species, sensory modality, stimulus
s parameters, and computational frameworks (Kiani et al., 2008; Brunton et al., 2013; Glaze et al.,
22 2015; Drugowitsch et al., 2016), none of these aspects alone can explain their different findings.

43 We extend classic evidence-integration models to the hierarchical case by including an explicit
a4 intermediate sensory representation, analogous to modeling each doctor’s individual diagnosis in
s addition to their consensus in the example above (Figure 1b). Taking this intermediate inference
s stage into account makes explicit that task difficulty is modulated by two distinct types of informa-
a7 tion exposing systematic differences between existing tasks: the information between the stimulus
s and sensory representation (“sensory information”), and the information between sensory represen-
s tation and category (“category information”) (Figure 1b). These differences alone do not entail any
so bias as long as inference is exact. However, inference in the brain is necessarily approrimate and
51 this approximation can interfere with its ability to account for its own biases. Implementing two
52 approximate hierarchical inference algorithms, we find that they both result in biases in agreement
53 with our data, and can indeed explain the puzzling discrepancies in the literature.

s« Results

ss  Approximate hierarchical inference leads to temporal biases

ss Normative models of decision-making in the brain are typically based on the idea of an ideal
57 observer, who uses Bayes’ rule to infer the most likely category on each trial given the stimulus. On
ss each trial in a typical task, the stimulus consists of multiple “frames” presented in rapid succession.
5o (By “frames” we refer to discrete independent draws of stimulus values that are not necessarily
o visual). If the evidence in each frame, ey, is independent, then evidence can be combined by simply
61 multiplying the associated likelihoods. This corresponds to the well-known process of summing the
2 log odds implied by each piece of evidence (Wald and Wolfowitz, 1948; Bogacz et al., 2006):

F
p(C = +1le,...,er) x p(C = +1) [ [ p(es|C = +1)
F=1

F
logp(C = +1ley, ... ep) =logp(C = +1) + Zlogp(eﬂc =+1)
=1
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Figure 1: a) A subject’s “temporal weighting strategy” is an estimate of how their choice is based
on a weighted sum of each frame of evidence e;. Three commonly observed motifs are decreasing
weights (primacy), constant weights (optimal), or increasing weights (recency). b) Information in
the stimulus about the category may be decomposed into information in each frame about a sensory
variable (“sensory information”) and information about the category given the sensory variable
(“category information”). c) Category information and sensory information may be manipulated
independently, creating a two-dimensional space of possible tasks. Any level of task performance
can be the result of different combinations of sensory and category information. A qualitative
placement of previous work into this space separates those that find primacy effects in the upper-
left from those that find recency effects or optimal weights in the lower right (see Supplemental Text
for detailed justification). Numbered references are: [1] Kiani et al., [2] Nienborg and Cumming,
[3] Brunton et al., [4] Wyart et al., [5] Raposo et al., [6] Drugowitsch et al.
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63 The ideal observer’s performance is thus determined only by (i) the information about C' available
6« on each frame, and (ii) the number of frames per trial.
65 In the brain, however, a decision-making area cannot base its decision on the externally pre-
ss sented stimulus directly, but must rely on intermediate sensory features, which we call x¢. If sensory
67 information is processed in a purely feedforward fashion with independent noise, then a decision-
¢ making area can simply integrate the evidence in x; directly. This is consistent with some theories
o of inference in the brain in which sensory areas represent a likelihood distribution over stimuli (Ma
70 et al., 2006; Beck et al., 2008; Pouget et al., 2013; Walker et al., 2019). However, activity in sensory
7 areas does not rigidly track the stimulus, but is known to be influenced by past stimuli (Yates
72 et al.,, 2017; Lueckmann et al., 2018), as well as by feedback from the rest of the brain (Gilbert
73 and Li, 2013; Keller and Mrsic-Flogel, 2018). In fact, the intermediate sensory representation is
74 itself often assumed to be the result of an inference process over latent variables in an internal
75 model of the world (Mumford, 1992; Lee and Mumford, 2003; Yuille and Kersten, 2006). This pro-
76 cess is naturally formalized as hierarchical inference (Figure 1b) in which feedforward connections
77 communicate the likelihood and feedback communicates the prior or other contextual expectations
7 (Fiser et al., 2010; Pouget et al., 2013; Gershman and Beck, 2016; Tajima et al., 2017; Lange and
79 Haefner, 2020).
Returning to the evidence integration problem in equation (1), accounting for intermediate
sensory representations corresponds to marginalizing over the intervening x; to compute the in-
stantaneous evidence p(es|C') as follows:

p(ef|C) = /p(efxf)p(wflc)dl“f
(i>£&EiZB§E£K22dxf. (2)

_ / p(sler) =000

so  The first line is simply the definition of marginalizing over xf, and the terms in red in the second
81 line are the result of applying Bayes’ rule to the red term in the first line. The integral incorporates
&2 sensory uncertainty over xy in the update to C, averaging over all plausible values weighted by
83 p(xfler), which is the posterior distribution over sensory features.

84 Importantly, equation (2) is true for any prior over x, since whatever prior, p(zy), is used
s to compute the posterior, p(z¢|es), is accounted for by dividing it out in the second term. In-
8 corporating prior information into the sensory representation, therefore, does not introduce any
&7 bias, as long as the update to C' can exactly account for (or “divide out”) that prior. However,
ss if sensory areas only approximately represent the posterior p(zy|ey), then downstream areas may
so only approximately be able to correct for the prior. Crucially, approrimations to equation (2) can
%0 lead to biases.

01 We hypothesize that feedback of “decision-related” information to sensory areas (Nienborg
o et al., 2012; Cumming and Nienborg, 2016) implements a prior that reflects current beliefs about
o3 the stimulus category (Haefner et al., 2016; Tajima et al., 2016; Lange and Haefner, 2020). Such
94 a bias is, in fact, optimal in the sense that it incorporates information from earlier frames; in a
s correlated world, as in our task, the first frame e; is informative of later sensory features x¢. Using
o6 pr_1(C =c) =p(C =cler,...,er_1) to denote the brain’s belief that the category is C' = c after
o7 the first f — 1 frames, the posterior over z¢ given all frames, p(z¢lei,...,ey), can be written as

p(zsler,...,ef) o pleslzs) Y py1(C = e)p(as|C = c) . .

pr(zy)
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¢ In other words, sensory areas dynamically combine instantaneous evidence (p(ef|xs)) with accumu-
oo lated categorical beliefs (py—1(C)) to arrive at a more precise estimate of present sensory features
100 xf .

101 As stated above, incorporating prior information into p(x¢lef) does not necessarily lead to a
102 bias, but approximately representing the posterior may lead to one. In the case where the prior
103 contains information about earlier stimuli as in equation (3), under-correcting for this prior leads
104 to earlier frames entering into the update twice, forming a positive feedback loop between estimates
s of xy and the belief in C'. This mechanism, which we call a “perceptual confirmation bias,” leads to
106 primacy effects. Over-correcting for the prior, on the other hand, leads to information from earlier
107 frames decaying away, observable as recency effects.

108 Below, we consider two models, each implementing approximate hierarchical inference in one of
100 the two major classes of approximate inference schemes known from statistics and machine learning:
o sampling-based and variational inference (Bishop, 2006; Murphy, 2012), both of which have been
w previously proposed models for neural inference (Fiser et al., 2010; Pouget et al., 2013). In both
12 models, temporal biases arise as a direct consequence of the approximate nature of inference over
13 the intermediate sensory variables in the brain. The strength and direction of the bias (primacy or
14 recency) depends on how how strong the prior influence of C' on x ¢ is — when this prior influence is
us  strong, it is under-corrected, leading to a confirmation bias and primacy effects. When the prior is
e weak, it is over-corrected, leading to recency effects. Importantly, the strength of the prior influence
u7 of C on xy — and hence the predicted direction of the bias — is easily manipulated experimentally,
us  as we describe next.

ne  “Sensory Information” vs “Category Information”

120 Accounting for the intervening sensory x as in Figure 1b implies that the information between the
121 stimulus and category can be partitioned into the information between the stimulus and the sensory
122 representation (e to x), and the information between sensory representation and category (x to C).
123 We call these “sensory information” and “category information,” respectively (Figure 1b). These
124 two kinds of information define a two-dimensional space in which a given task is located as a single
125 point (Figure 1c). For example, in a visual task each ey would be the image on the screen while x;
126 might be image patches that are assumed to be sparsely combined to form the image (Olshausen
12z and Field, 1997). The posterior over the latent features x; would be represented by the activity of
18 relevant neurons in visual cortex.

129 An evidence integration task may be challenging either because each frame is perceptually
1o unclear (low “sensory information”), or because the relationship between stimulus and category
131 is ambiguous in each frame (low “category information”). Consider the classic dot motion task
122 (Newsome and Pare, 1988) and the Poisson clicks task (Brunton et al., 2013), which occupy opposite
133 locations in the space. In the classic low-coherence dot motion task, subjects view a cloud of moving
13¢ dots, a small percentage of which move “coherently” in one direction. Here, sensory information
135 18 low since the percept of net motion is weak on each frame. Category information, on the other
136 hand, is high, since knowing the true net motion on a single frame would be highly predictive of
137 the correct choice (and of motion on subsequent frames). In the Poisson clicks task on the other
133 hand, subjects hear a random sequence of clicks in each ear and must report the side with the
130 higher rate. Here, sensory information is high since each click is well above sensory thresholds.
uo Category information, however, is low, since knowing the side on which a single click was presented
11 provides only little information about the correct choice for the trial as a whole (and the side of the
12 other clicks). When frames are sequential, another way to think about category information is as
113 “temporal coherence” of the stimulus: the more each frame of evidence is predictive of the correct
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144 choice, the more the frames must be predictive of each other, whether a frame consists of visual
us  dots or of auditory clicks. Note that our distinction between sensory and category information
us i different from the well-studied distinction between internal and external noise; in general, both
147 internal and external noise will reduce the amount of sensory and category information.

148 Category information governs the strength of the prior fed back from C' to xy. For instance, in
1o a task with high category information such as dot motion, 60% certainty in the stimulus category
150 translates to 60% certainty in the net motion on the next frame. In a low category information task
151 such as the Poisson clicks task, on the other hand, 60% certainty about the side with more clicks
12 is only weakly predictive of where the next click will appear. In equation (3), category information
153 corresponds to the strength of the prior py(zy), and sensory information to the strength of the
154 likelihood p(ef|zf). If our hypothesis is correct that temporal biases are the result of approximate
155 hierarchical inference, then trading off between sensory information and category information should
156 be sufficient to switch from primacy effects to recency effects, all while subjects’ overall performance
157 is kept at threshold.

158 Indeed, qualitatively placing prior studies in the space spanned by these two kinds of informa-
150 tion results in two clusters: the studies that report primacy effects are located in the upper left
10 quadrant (low-sensory/high-category or LSHC) and studies with flat weighting or recency effects
11 are in the lower right quadrant (high-sensory/low-category or HSLC) (Figure 1c). This provides
162 initial empirical evidence that approximate hierarchical inference dynamics, along with the trade-off
163 between sensory information and category information, may indeed underlie differences in temporal
164 weighting seen in previous studies. Further, this framework predicts that simple changes in stimulus
165 statistics should change the temporal weighting found in previous studies (Supplemental Table S1).
166 We next describe a novel set of visual discrimination tasks designed to directly probe this trade-off
167 between sensory information and category information to test these predictions within individual
168 subjects.

w  Visual Discrimination Task

170 We designed a visual discrimination task with two stimulus conditions that correspond to the two
111 opposite sides of this task space, while keeping all other aspects of the design the same (Figure 2a).
172 If our theory is correct, then we should be able to change individual subjects’ temporal weighting
173 strategy simply by changing the sensory-category information trade-off.

174 The stimulus in our task consisted of a sequence of ten visual frames (83ms each). Each frame
175 consisted of band-pass-filtered white noise with excess orientation power either in the —45° or the
176 +45° orientation (Beaudot and Mullen, 2006) (Figure 2b,d). On each trial, there was a single true
177 orientation category, but individual frames might differ in their orientation. At the end of each
178 trial, subjects reported whether the stimulus was oriented predominantly in the —45° or the +45°
179 orientation. The stimulus was presented as an annulus around the fixation marker in order to
180 minimize the effect of small fixational eye movements (Methods).

181 If the brain’s intermediate sensory representation reflects the orientation in each frame, then
182 sensory information in our task is determined by how well each image determines the orientation
13 of that frame (i.e. the amount of “noise” in each frame), and category information is determined
184 by the probability that any given frame’s orientation matches the trial’s category. We chose to
185 quantify both sensory information and category information, using signal detection theory, as the
186 area under the receiver-operating-characteristic curve for e; and ¢ (sensory information), or for x;
17 and C (category information). Hence for a ratio of 5 : 5, a frame’s orientation does not predict the
188 correct choice and category information is 0.5. For a ratio of 10 : 0, knowledge of the orientation of
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Figure 2: Summary of experiment design. a) Category information is determined by the expected
ratio of frames in which the orientation matches the correct category, and sensory information is
determined by a parameter k determining the degree of spatial orientation coherence (Methods).
At the start of each block, we reset the staircase to the same point, with category information at
9 :1 and k at 0.8. We then ran a 2-to-1 staircase either on x or on category information. The
LSHC and HSLC ovals indicate sub-threshold trials; only these trials were used in the regression to
infer subjects’ temporal weights. b) Visualization of a noisy stimulus in the LSHC condition. All
frames are oriented to the right. ¢) Psychometric curves for all subjects (thin lines) and averaged
(thick line) over the k staircase. Shaded gray area indicates the median threshold level across all
subjects. d) Example frames in the HSLC condition. The orientation of each frame is clear, but
orientations change from frame to frame. e) Psychometric curves over frame ratios, plotted as in

(c).
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Figure 3: Subjects’ temporal weights robustly change with stimulus statistics. a-b) Temporal
weights from logistic regression for individual subjects (thin lines) and the mean across all subjects
(thick lines). Weights are normalized to have a mean of 1 to emphasize shape rather than magnitude.
c) Difference of normalized weights (HSLC—LSHC). Despite variability across subjects in (a-b),
each subject reliably changes in the direction of a recency effect. d) Average log-likelihood difference
from logistic regression for three regularized weight functions: logistic regression with a smoothness
prior, and with weights constrained to be linear or exponential functions of time. Cross-validation
indicates that constraining weights to be linear or exponential functions of time is best. e-g)
Individual and average temporal weights, plotted as in (a-c), now using weights constrained to be
exponential functions of time. Weights in (e) and (f) are normalized to have mean 1 for visualization
purposes. h) Change in the exponential slope parameter between the two task contexts for each
subject is consistently positive (individually significant in 9 of 12 subjects). Points are median
slope values after bootstrap-resampling each subject’s sub-threshold trials. A slope parameter

B > 0 corresponds to recency and § < 0 to primacy (similar results for linear fits, Supplemental
Figure S2).
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180 a single frame is sufficient to determine the correct choice and category information is 1. Exactly
10 quantifying sensory information depends on individual subjects, but likewise ranges from 0.5 to 1.
101 For a more detailed discussion, see Supplementary Text.

102 We recruited 15 human subjects, out of which 12 (9 naive and 3 authors) completed the ex-
103 periment. For each subject, we compared two conditions intended to probe the difference between
10 the LSHC and HSLC regimes. Starting with both high sensory and high category information,
15 we either ran a 2:1 staircase lowering the sensory information while keeping category information
196 high, or we ran a 2:1 staircase lowering category information while keeping sensory information
17 high (Figure 2a). These are the LSHC and HSLC conditions, respectively (Figure 2b,d). For each
198 condition and each subject, we used logistic regression to infer the influence of each frame onto their
190 choice. Subjects’ overall performance was matched in the two conditions by setting a performance
200 threshold below which trials were included in the analysis (Methods).

201 In agreement with our hypothesis, we find predominantly flat or decreasing temporal weights
202 in the LSHC condition (Figure 3a,e). However, when the information is partitioned differently —
203 in the HSLC condition — we find flat or increasing weights (Figure 3b,f). In fact, the difference in
200 weights between conditions was remarkably consistent across subjects (Figure 3c,g). To quantify
205 this change, we first used cross-validation to select a method for quantifying temporal slopes, and
206 found that constraining weights to be a linear or exponential function of time worked equally well,
207 and both outperformed plain or regularized logistic regression (Figure 3d; Methods). A within-
208 subject comparison revealed that the change in slope between the two conditions was as predicted
200 for all subjects (Figure 2h) (p < 0.05 for 9 of 12 subjects, bootstrap). This demonstrates that the
210 trade-off between sensory and category information in a task robustly changes subjects’ temporal
a1 weighting strategy as we predicted, and further suggests that the sensory-category information
212 trade-off may resolve the discrepant results in the literature.

23 Approximate inference models

214 We will now show that these significant changes in evidence weighting for different stimulus statis-
215 tics arise naturally in common models of how the brain might implement approximate inference.
216 In particular, we show that both a neural sampling-based approximation (Hoyer and Hyvérinen,
217 2003; Fiser et al., 2010; Haefner et al., 2016; Orbén et al., 2016) and a parametric (mean-field)
218 approximation (Beck et al., 2012; Raju and Pitkow, 2016) can explain the observed pattern of
210 changing temporal weights as a function of stimulus statistics.

220 Optimal inference in our task, as in other evidence integration tasks, requires computing the

221 posterior over C' conditioned on the evidence eq, ..., ey, which can be expressed as the Log Posterior
22 Odds (LPO),

p(C = +1ler, ... ef) p(C =+1) p(es|C = +1)
lo —log 2 =T L N pog MG = T 4
Ep(C=—1ler,....ef) ®p(C=-1) Z; ® pleiC = —1) )
LPO; LLO;

23 where LLOy is the log likelihood odds for frame f (Gold and Shadlen, 2007; Bogacz et al., 2006).
24 To reflect the fact that the brain has access to only one frame of evidence at a time, this can
25 be rewritten this as an online update rule, summing the previous frame’s log posterior with new
26 evidence gleaned on the current frame:

LPOf = LPOf_1 + LLOf. (5)
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Figure 4: Approximate inference models explain results. a) The difference in stimulus statistics
between HSLC and LSHC trade-offs implies that the relevant sensory representation is differentially
influenced by the stimulus or by beliefs about the category C. A “confirmation bias” or feedback
loop between x and C emerges in the LSHC condition but is mitigated in the HSLC condition.
Black lines indicate the underlying generative model, and red/blue lines indicate information flow
during inference. Arrow width represents coupling strength. b) Performance of an ideal observer
reporting C' given ten frames of evidence. White line shows threshold performance, defined as 70%
correct. ¢) Performance of the sampling model with v = 0.1. Colored dots correspond to lines in
the next panel. d) Temporal weights in the model transition from recency to a strong primacy
effect, all at threshold performance, as the stimulus transitions from the high-sensory /low-category
to the low-sensory /high-category conditions. e€) Using the same exponential fit as used with human
subjects, visualizing how temporal biases change across the entire task space. Red corresponds to
primacy, and blue to recency. White contour as in (c). Black lines are iso-contours for slopes
corresponding to highlighted points in (c). f-h) Same as c-d but for the variational model with
v=0.1.

This expression is derived from the ideal observer and is still exact. Since the ideal observer weights
all frames equally, the online nature of inference in the brain cannot by itself explain temporal
biases. Furthermore, because performance is matched in the two conditions of our experiment,
their differences cannot be explained by the total amount of information, governed by the likelihood
p(ef|C).

As we described earlier, we hypothesize that inference about z; incorporates past information
from e; through es_q, and this can be implemented online by feeding back information in LPO;_;
(equation (3)). Our models therefore assume a prior over xy that depends on the current belief in
C. This assumption differs from some models of inference in the brain that assume populations of
sensory neurons strictly encode the likelihood of the stimulus (or instantaneous posterior) (Ma et al.,
2006; Beck et al., 2008), but is consistent with other models from both sampling and parametric
families (Berkes et al., 2011; Haefner et al., 2016; Raju and Pitkow, 2016; Tajima et al., 2016).
We emphasize again that in the case of exact inference, this bias that is fed back could be exactly
“subtracted out” in the update to LPOy; temporal biases arise from the combination of feedback
of current beliefs and by the approximate nature of the representation of the posterior on z .
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22 Sampling model

23 The neural sampling hypothesis states that variable neural activity over brief time periods can be
24 interpreted as a sequence of samples from the brain’s posterior over latent variables in its internal
25 model. In our model, samples of x; are drawn from the full posterior having incorporated the
26 running estimate of py_1(C) (equation (3), Methods). Dividing out the prior that was fed back (as
27 in equation (2)) is naturally formulated as “importance sampling,” which in our case weights each
28 sample by the inverse of the prior (Shi and Griffiths, 2009; Murphy, 2012) (Methods). In the most
29 extreme case of continual online updates, one could imagine that the brain computes each update
20 to py(C) after observing a single sample of z¢. In this case, no correction would be possible; a
1 downstream area would be unable to recover the instantaneous likelihood from a single posterior
22 sample. If the brain is able to base each update on multiple samples, then the importance weights
253 of each sample in the update account for the discrepancy between the two (Methods). While this
24 approach is unbiased in the limit of infinitely many samples, it incurs a bias for a finite number —
255 the relevant regime for the brain (Owen, 2013). The bias is as if the expectation in (2) is taken

256 with respect to an intermediate distribution that lies between the fully biased one (p(xsle1,. .., ef))
27 and the unbiased one based on instantaneous evidence only (p(xflef)) (Cremer et al., 2017).
258 Under-correcting for the prior that was fed back results in a positive feedback loop between

20 decision-making and sensory areas — the “perceptual confirmation bias” mechanism introduced
260 above. Importantly, this feedback loop is strongest when category information is high, correspond-
261 ing to stronger feedback, and sensory information is low, since then z; is both more dependent
22 on the beliefs about C' and less dependent on e;. Figure 4b and Supplemental Figure S5a-c show
263 performance for the ideal observer and for the resulting sampling-based model, respectively, across
264 all combinations of sensory and category information. White lines show threshold performance
265 (70% correct) as in Figure lc.

266 This model reproduces the primacy effect, and how the temporal weighting changes as the
267 stimulus information changes seen in previous studies. Importantly, it predicted the same within-
28 subject change seen in our data (Haefner et al., 2016). However, double-counting the prior alone
20 cannot explain recency effects (Supplemental Figure Sba-c,j-1).

270 There are two simple and biologically-plausible explanations for the observed recency effect
o1 which turn out to be nearly equivalent. First,the brain may try to actively compensate for the
o2 prior influence on the sensory representation by subtracting out an estimate of that influence.
o713 That is, the brain could do approximate bias correction to mitigate the effect of the confirmation
o74 bias. We modeled linear bias correction by explicitly subtracting out a fraction of the running

a5 posterior odds at each step: )
LPOy < (1— ’y)LPOffl + LLOy (6)

276 where 0 < v < 1 and LLO # is the model’s (biased) estimate of the log likelihood odds. Second, the
277 brain may assume a non-stationary environment, i.e. C' is not constant over a trial. Interestingly,
s Glaze et al. (2015) showed that optimal inference in this case implies equation (6) when LPOy
279 is small, which can be interpreted as a noiseless, discrete time version of the classic drift-diffusion
250 model (Gold and Shadlen, 2007) with 7 as a leak parameter.

281 Incorporating equation (6) into our model reduces the primacy effect in the upper left of the task
22 space and leads to a recency effect in the lower right (Figure 4c-e, Supplemental Figure S5), as seen
233 in the data. We performed additional numerical experiments with the leak parameter, detailed in
28« the Supplemental Text. Two findings are of note here. First, we found that in the regime where the
25 confirmation bias is strongest (high category information), a moderate leak improves the model’s
286 performance, contrary to the behavior of leaky integration in models without feedback, where it
27 impairs performance. Second, we found that if the optimal v is used for all tasks (the value which
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258 maximizes performance), then temporal biases vanish. Our data therefore imply that either the
280 brain does not optimize its leak to the statistics of the current task, or that it does so on a timescale
200 that is slower than a single experimental session (roughly 1 hour in our case).

200 Variational model

202 The second major class of models for how probabilistic inference may be implemented in the brain
203 — based on mean-field parametric representations (Ma et al., 2006; Beck et al., 2012) — behaves
204 similarly. These models commonly assume that distributions are encoded parametrically in the
205 brain, but that the brain explicitly accounts for dependencies only between subsets of variables, e.g.
206 within the same cortical area. (Raju and Pitkow, 2016). We therefore make the assumption that
207 the joint posterior p(x, Ce) is approximated in the brain by a product of parametric distributions,
208 ((x)q(C) (Beck et al., 2012; Raju and Pitkow, 2016). Inference proceeds by iteratively minimizing
200 the Kullback-Leibler divergence between q(z)q(C)q(z) and p(z,C, z|e), where z is an auxiliary
s0 variable we introduce to make this a product of exponential families, as is common practice for
s mean field variational inference algorithms (Methods). As in the sampling model, the current belief
sz about the category C acts as a prior over x. Because this model is unable to explicitly represent
303 posterior dependencies between sensory and decision variables, both x and C' being positive and
s¢  both z and C being negative act as attractors of its temporal dynamics. This yields qualitatively
305 the same behavior as the sampling model: a stronger influence of early evidence and a transition
36 from primacy to flat weights as category information decreases. As in the sampling model, recency
so7  effects emerge only when approximate bias correction is added (Figure 4f-h, Supplemental Figure
s08 S5j-r). Whereas the limited number of samples was the key deviation from optimality in the
30 sampling model, here it is the assumption that the brain represents its beliefs separately about z
si0 and C in a factorized form (Methods).

. Confirmation bias, not bounded integration, explains primacy ef-
€. fects

a3 The primary alternative explanation for primacy effects in fixed-duration integration tasks proposes
s« that subjects integrate evidence to an internal bound, at which point they cease paying attention
a5 to the stimulus. In this scenario, early evidence almost always enters the decision-making pro-
a6 cess while evidence late in trial is often ignored. Averaged over many trials, this results in early
sz evidence having a larger effect on the final decision than late evidence, and hence decreasing re-
sis  gression weights (and psychophysical kernels) just as we found in the LSHC condition (Kiani et al.,
si0 2008). While superficially similar, both models reflect very different underlying mechanism: in our
320 approximate hierarchical inference models, a confirmation bias ensures that early evidence has a
sz larger effect on the final decision than late evidence for every single trial. In the integration to
522 bound (ITB) model, in a single trial, all evidence is weighed exactly the same before the bound is
323 hit. and not at all afterwards. In order to test whether the integration to bound (ITB) mechanism
324 could explain our results we developed a functional integration model that could be fit directly to
325 subjects’ behavior (Figure 5a). Our functional model is a simple extension to classic drift diffusion
326 models, which can also be interpreted as integrating log odds (Gold and Shadlen, 2007). Until it
327 hits a bound or the trial ends, the model integrates signals as follows:
+bound if LPO;_; > +bound
LPO; = ¢ —bound if LPOy_y < —bound , (7)

(1 —~v)LPOs_1 + g(sf) + € otherwise

12


https://doi.org/10.1101/440321
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/440321; this version posted November 25, 2020. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

a) Functional Integration Model ~ ¢) Changes are primarily in leak term

+bound ., | bound
my
— l | recency due to leak
ey e— ..' )
2 primacy due t¢ CB | ‘ ﬂ Qf —
3 X
o
§D - evidence
-—-leak < 0
....... leak = 0 primacy due to bound | __é:
---------- leak > 0 1 e |
-bound 1 0.5 0 l 0.5 1
1 frame number 10 } -y :
leak

d) Leak parameter explains

b) True biases recovered .
temporal biases

8. \
Phit] _d g LSHC - HSL¢
~e— LsHC| {0} | 2 1 g
-6~ HSLC N < =
: . = 2
< @)~ «
05 -0.3 -0.1 .@,,Ti 0.3 % 71
J.I‘LZ. 7()!1 'Hdum B} B%
= S
—& £ g0
0.3 gs 3
It o =
0.5 kS 3-1
X 0 IS

Figure 5: Results of fitting functional model show that a leak, rather than a bound, accounts for
most of the observed biases. a) We fit a functional model of integration dynamics. As in classic
drift-diffusion models, evidence is integrated to an internal bound, at which point subsequent
frames are ignored. Compared to perfect integration (leak= 0), a positive leak (leak> 0) decays
information away and results in recency effects, and a negative leak (leak< 0) amplifies already
integrated information, resulting in primacy effects. Notice that leak < 0 may also result in more
bound crossings — both the leak and the bound together will determine the shape of the temporal
weights. b) Across both conditions, the temporal slopes (/) implied by the fit model closely
match the slopes in the data. Recall that S < 0 corresponds to primacy, and 5 > 0 to recency.
c¢) Inferred value of the bound and leak parameters in each condition, shown as median+68%
confidence intervals. Ellipses depict the spread of subject means. The classic ITB explanation of
primacy effects corresponds to a non-negative leak and a small bound — illustrated here as a shaded
green area. Note that the three subjects near the I'TB regime are points from the HSLC task — two
still exhibit mild recency effects and one exhibits a mild primacy effect as predicted by ITB. d) We
quantified the impact of the leak term and of the bound and noise terms by ablating them from
the model then comparing the resulting temporal bias to the subject’s actual bias (Methods). This
lets us approximately quantify the fraction of each effect attributable to each parameter (but they
do not necessarily sum to 1). In the LSHC condition, the (negative) leak parameter accounted for
nearly all of the observed primacy effects. In the HSLC condition, the (positive) leak parameter
accounted for more than 100% of the observed recency effects, since it was counteracted by the
presence of a bound. Note that the single outlying subject (diamond symbols) corresponds to the
outlying subject in panels (c¢) and (b) — see Supplemental Figure S13 for more information.
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28 where sy is the stimulus on frame f and € is additive Gaussian noise. The function g(s) translates
320 from stimuli seen by the subjects into equivalent log odds, adjusting for the category and sensory
330 information in the task (Methods). This model differs from our earlier hierarchical inference model
s in a few key ways. First, the signal that is integrated each frame, g(s), is derived from the stimulus
32 our subjects saw and contains no approximation nor inherent positive-feedback or confirmation-
333 bias dynamics. Second, noise is added explicitly, whereas before all stochasticity came from the
334  approximate computation of log odds, e.g. by sampling. Third, the model stops integrating when
335 it hits an internal bound. Fourth, the model functionally replicates confirmation-bias dynamics
336 by allowing the leak term, -, to be negative; when ~ is positive, information from earlier frames
337 decays away, but when v is negative, earlier information is amplified (Busemeyer and Townsend,
s 1993; Bogacz et al., 2006).

330 The functional model exhibits three distinct regimes of behavior. First, when the leak is positive
a0 and the bound is large, it produces recency biases. Second, when the bound is small, it produces
sa1 primacy biases as in the ITB model (Kiani et al., 2008), as long as the leak is also small so that
32 it does not prevent the bound from being crossed. Third, when the bound is large and the leak
13 1S negative, it also produces primacy biases but now due to confirmation-bias-like dynamics rather
a4 than due to bounded integration. In this regime, where 1 — v > 1, early evidence is “double-
s counted” and this model becomes functionally indistinguishable from our approximate hierarchical
us  inference models (Supplemental Figure S10). Crucially, this means that this single model family
a7 can account for both primacy due to I'TB and primacy due to a confirmation bias by different
us parameter values (recovery of ground-truth mechanisms shown in Supplemental Figures S11, S12)
a9 and we can use it to distinguish between the different proposals by fitting a single model to our
50 data and examining its parameters.

351 We fit the functional model to sub-threshold trials from our subjects, separately for the LSHC
352 and the HSLC conditions. We first asked whether the inferred model parameters reproduced the
353 observed biases. Indeed, Figure 5b shows near-perfect agreement between the temporal biases
354 implied by simulating choices from the fitted models and the biases inferred directly from subjects’
355 choices. Figure 5c¢ shows the posterior mean and 68% confidence interval for the leak parameter
36 () and bound parameter inferred for each subject. The model consistently infers a negative leak
357 in the LSHC condition and positive leak in the HSLC condition for all subjects, suggesting that the
358 confirmation-bias dynamics implied by the negative leak are crucial to explain subject’s primacy
350 biases in the LSHC condition, as well as the change in bias from LSHC to HSLC conditions.
0 However, while the inferred bound for every single subject is so high as not to contribute at all if
61 the leak was zero, it is possible that bounded integration still contributes to primacy effects, given
2 that a stronger negative leak will hit a bound more often.

363 To determine the relative contribution of the leak and bound parameters to temporal biases,
s« we simulated choices from the posterior over model parameters with either the leak parameter set
365 to zero or after eliminating the bound (Methods). If ablating the bound leaves temporal biases
s66 unchanged, then we can conclude that biases were driven by the leak, and conversely, a temporal
7 bias after ablating the leak must be due to the bound. We computed a population-level “ablation
ss  index” for each parameter, which is 0 if removing the parameter has no effect on g, and is 1 if
0 removing it destroys all temporal biases. The ablation index can therefore be loosely interpreted as
sro  the fraction of the subjects’ primacy or recency biases that are attributable to each parameter (but
s they do not necessarily sum to 1 because 3 is a nonlinear combination of parameters). In the LSHC
sz condition, we found that our subjects’ primacy effects are driven mostly by confirmation-bias-like
373 integration dynamics rather than by bounded integration, though both mechanisms play some role
s+ (Figure 5d). The ablation index for the leak term was 0.89 (68% CI=[0.87,0.96]), and for the bound
a5 term it was 0.19 (68% CI=[0.15,0.25]) (Figure 5d). This indicates that although both mechanisms
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376 are present, primacy effects in our data are dominated by the self-reinforcing dynamics of a negative
377 leak. In the HSLC condition, as expected, we found that recency effects are driven mostly by the
s leak parameter (Figure 5d). The ablation index for the leak term was 0.92 (68% CI=[0.69,1.17]),
s79  and for the bound it was 0.01 (68% CI=[—0.41,0.43]) (Figure 5d). The index above 1 for the leak
ss0  and below 0 for the bound reflects the fact that recency effects can be balanced by the bound, so
ss1 that in the absence of a leak, the bias reverts to a slight primacy effect due to an I'TB mechanism,
32 and in the absence of a mitigating bound, the recency effect appears stronger.

383 Interestingly, one subject exhibited a slight primacy effect in the HSLC condition, and our
s8¢ analyses suggest this was primarily due to bounded integration dynamics as proposed by Kiani
35 et al (2008). This outlier subject is marked with a diamond symbol throughout Figure 5, and is
ss6 further highlighted in Supplemental Figure S13. However, even this subject’s primacy effect in
ss7 the LSHC condition was driven by a confirmation bias (negative leak), and their change in slope
a8 between LSHC and HSLC conditions was in the same direction as the other subjects. Importantly,
330 finding a primacy effect due to an internal bound confirms that our model fitting procedure is able
30 to detect such effects when they are in fact present.

301 Two additional subjects appear to have low bounds in the HSLC condition (Figure 5c¢), but are
32 dominated by the positive leak, resulting in an overall recency bias. For these subjects, the recency
303 effect is further exaggerated when the bound is ablated, or flipped to primacy when the leak is
s ablated, resulting in ablation indices below 0 for the bound and above 1 for the leak (Figure 5d,
305 steepest downward trending line in HSLC condition).

w6 Discussion

37 Our work makes three main contributions. First, we show that online inference in a hierarchical
308 model can result in characteristic task-dependent temporal biases, and further that such biases
309 naturally arise in two specific families of biologically-plausible approximate inference algorithms.
200 Second, explicitly modeling the mediating sensory representation allows us to partition the infor-
201 mation in the stimulus about the category into two parts — “sensory information” and “category
202 information” — defining a novel two-dimensional space of possible tasks. Third, we collect new data
203 confirming a critical prediction of our theory, namely that individual subjects’ temporal biases
204 change depending on the nature of the information in the stimulus. Fitting a phenomenological
405 model to subjects’ behavior confirmed that these changes in biases are functionally due to a change
a6 in integration dynamics rather than bounded integration. These results strongly suggest that the
407 discrepancy in temporal biases reported by previous studies may be resolved by considering how
108 their tasks trade off sensory and category information.

400 We used two distinct families of models to arrive at these conclusions. We first introduced
a0 a class of hierarchical inference models based on Importance Sampling (IS) or Variational Bayes
s (VB). Due to approximate inference dynamics — discussed in detail below — both of these models
412 exhibit a confirmation bias in tasks with high category information, and they transition to recency
a3 effects in the high sensory information regime. Our hierarchical inference models distill the com-
a4 plexities of inference in large generative models down to just three scalar variables to isolate and
a5 study confirmation-bias dynamics, but the results generalize to higher-dimensional and deeper hier-
a6 archical models (Supplemental Figure S9). In our reduced models, we found that confirmation bias
a7 dynamics are functionally indistinguishable from noisy integration with a negative leak (Busemeyer
a1z and Townsend, 1993; Bogacz et al., 2006). This motivated the second class of functional or descrip-
419 tive rather than mechanistic models, which allowed us to estimate the parameters of integration
420 dynamics directly and compare this to an alternate explanation for primacy effects in the literature
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21 (Kiani et al., 2008). Our conclusions thus proceed in two stages: first, the changes in our subjects’
42 apparent weighting strategies are functionally explained by a change in the integration dynamics
23 (primacy as v < 0, recency as v > 0). Second, these changes are themselves parsimoniously ex-
424 plained by hierarchical inference: functional changes in the leak parameter between tasks are a
425 natural consequence of approximate hierarchical inference with all model parameters, including the
26 leak, constant across tasks. While it is parsimonious to assume that the leak parameter is constant
427 in the hierarchical inference models, we found that the optimal or normative leak parameter is high
228 in the LSHC regime and low in the HSLC regime (Supplemental Figure S6) such that it balances
429 the confirmation bias dynamics. Yet, we also considered the possibility that subjects infer the
a0 environment to be more volatile in the HSLC condition (Glaze et al. (2015); Figure S8), resulting
431 in the opposite trend of stronger leak in the HSLC relative to LSHC condition. Our present data
432 cannot speak to whether + is truly fixed, or whether it is only constant by an accident of balancing
433 bias-correction with a volatile environment. We leave this as a question for future work.

434 The “confirmation bias” emerges in our hierarchical inference models as the result of four
s key assumptions. Our first assumption is that inference in evidence integration tasks is in fact
43 hierarchical, in particular that the different levels of the hierarchy require integrating evidence
437 at different timescales, and that the brain approximates the posterior distribution over both the
438 slow-changing category, C, and fast-changing intermediate sensory variables, . This is in line
439 with converging evidence that populations of sensory neurons encode posterior distributions of
mo corresponding sensory variables (Lee and Mumford, 2003; Yuille and Kersten, 2006; Berkes et al.,
a1 2011; Beck et al., 2012) incorporating dynamic prior beliefs via feedback connections (Lee and
42 Mumford, 2003; Yuille and Kersten, 2006; Beck et al., 2012; Nienborg and Roelfsema, 2015; Tajima
a3 et al., 2016; Orbédn et al., 2016; Haefner et al., 2016; Lange and Haefner, 2020), which contrasts
sa  with other probabilistic theories in which only the likelihood is represented in sensory areas (Ma
as et al., 2006; Beck et al., 2008; Orhan and Ma, 2017; Walker et al., 2019).

446 Our second key assumption is that evidence is accumulated online. In our models, the belief
47 over C is updated based only on the posterior from the previous step and the current posterior over
4s x. This can be thought of as an assumption that the brain does not have a mechanism to store
49 and retrieve earlier frames veridically, but must make use of currently available summary statistics.
a0 This is consistent with drift-diffusion models of decision-making (Gold and Shadlen, 2007). As
451 mentioned in the main text, the assumptions until now — hierarchical inference with online updates
42— do not entail any temporal biases for an ideal observer. Further, the use of discrete time in our
453 experiment and models is only for mathematical convenience — we expect analogous dynamics to
454 emerge in continuous-time problems that involve online inference at multiple timescales.

455 Third, we implemented hierarchical online inference making specific assumptions about the
456 limited representational power of sensory areas. In the sampling model, we assumed that the brain
457 can draw a limited number of independent samples of & per update to C. Interestingly, we found
48 that in the small sample regime, the models is inherently unable to account for the prior bias of
9 C on z in its updates to C'. Existing neural models of sampling typically assume that samples
w0 are distributed temporally (Hoyer and Hyvarinen, 2003; Fiser et al., 2010), but it has also been
w61 proposed that the brain could run multiple sampling “chains” distributed spatially (Savin and
w2 Deneve, 2014). The relevant quantity for our model is the total effective number of independent
463 samples that can be generated, stored, and evaluated in a batch to compute each update. The
464 more samples, the