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Perceptual confirmation bias from approximate online inference 
Richard D. Lange∗, Ankani Chattoraj∗, Matthew Hochberg, Jacob Yates, Ralf M. Haefner

Brain and Cognitive Sciences, University of Rochester

In evidence integration tasks,subjects make a categorical decision from a sequence of (typically i.i.d.) sensory information. 

A psychophysical kernel (PK) quantifies the ‘weight’ subjects give to evidence in space or in time. 

A confirmation bias (CB) occurs when people upweight information confirming existing beliefs, thus strengthening those beliefs. 

A Perceptual CB implies a PK that decreases over time. 
Different studies have reported different temporal PK shapes, typically flat or decreasing.

Questions
• What paradigm is most likely to obtain flat PK for high contrast? 
• Is feedback best probabilistic or based on ideal observer? 
• Can gamma explain subject variability?

Experiments
We used an orientation-discrimination paradigm with templates embedded in noise.
• In task A, a staircase on the template contrast is run to reach 70% performance
• In task B, a staircase is run on pprior

• Both tasks’ staircases begin at the same set of parameters.
Change in PK slopes consistent with our framework's predictions, but significant 
variability between subjects.

Nienborg & Cumming 2009

Kiani et al. 2008

Brunton et al.  2013

Wyart et al. 2012
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Our Framework
Different sources of uncertainty: 
With high-contrast stimuli that are each 

weakly predictive of the correct choice, 
no CB is observed. 

With low-contrast stimuli that are each 
highly predictive of the correct choice, a 
CB is observed. 

Threshold performance is achieved at a 
balance between these.
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We define prior information as the probability of an ideal observer 
guessing the category of a single ‘frame’ xt given C

We define sensory or likelihood information as the probability of 
guessing xt given et
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Summary
• Discrepancy in studies reporting evidence-weighting over time, 

unexplainable by ideal observer. 
• We introduce a 2-dimensional categorization of tasks, separating 

stimulus-to-sensory and sensory-to-decision correlations. 
• Approximate inference by sampling can explain published results. 
• Model makes neurophysiological predictions for influence of evolving 

confidence in decision on sensory area 
• Our preliminary experimental results: 
• Test framework within-subject, with a single modality & paradigm. 
• Have qualitative agreement with the model and published results.

Performance in different 
tasks can be tuned using 
different values of γ.
Can subjects adjust γ  
according to the task?
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Generative model:
C = category / decision-area
x = sensory representation
e = evidence

Goal: compute posterior over C given e

…using online updates

…while sampling from the full posterior at every moment. 
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et al., 2015), we argue that belief propagation is the more
parsimonious explanation for the observed task-dependent
correlations.

The observation that the time courses of CPs and PKs differ
during the stimulus presentation has been a challenge to feed-
forward models of sensory processing and has been taken as
evidence for a feedback component in CPs (Nienborg and Cum-
ming, 2009). These findings are fully consistent with our model
where CPs contain both a feedforward and a feedback compo-
nent. The existence of a feedforward component canmost easily
be seen by the fact that CPs are larger than 0.5 at stimulus onset
when the model’s belief about the correct decision is still 50-50.
The magnitude of this bottom-up component follows the same
decreasing time course as the PK (Figure 7A) (Nienborg and
Cumming, 2009), with the difference accounted for by top-
down belief propagation. Furthermore, we have demonstrated
that the very same feedback signal that causes the increasing
CPs also causes a decreasing PK due to a positive feedback
loop between decision-making neurons and sensory neurons.
We stress that we did not hand-craft themodel structure in order
to fit these observations but that this feedback signal is a direct
result of performing online inference by sampling in this task.

There exist alternative explanations for a decreasing PK sug-
gesting that the brain inappropriately uses strategies optimal
for reaction-time tasks (integration-to-bound, Gold and Shadlen,
2007) or hypothesizing costs intrinsic to accumulating evidence
(Drugowitsch et al., 2012). However, our explanation demon-
strates that even if a neural decision circuit itself equally inte-
grates the signals it receives from sensory neurons over time,
as has been suggested recently (Brunton et al., 2013), its top-
down influence on the very same sensory neurons can lead to
early evidence being weighted more strongly than evidence
presented at the end of the trial if that evidence is weak. Future
work on extending our model to a reaction-time paradigm and
comparing its predictions with reaction-time data will be able
to assess the relative importance and explanatory power of
these different hypotheses.

Our study complements a growing body of literature suggest-
ing that sampling-based probabilistic inference may underly
higher perceptual and cognitive processes (Griffiths et al.,
2012; Vul et al., 2014), and it suggests that probabilities also
might be represented by samples in lower sensory processing
(given the compatibility with the data considered here). It is
particularly intriguing that basic visual perception appears to

be susceptible to the same confirmation bias that is ubiquitous
in the context of higher cognitive reasoning (Nickerson, 1998).
If the same two mechanisms that contribute to a decreasing
PK in our model (a sequential sampling approximation and evi-
dence accumulation on the basis of inferred beliefs instead
of directly observed information) also underlie higher-order
cognition, then this suggests a new candidate explanation for
the confirmation bias, different from previous accounts (Lieder
et al., 2012). More generally, our framework bridges cognitive
science and systems neuroscience by constructing a rational
process model (Griffiths et al., 2012) combining the generative
model for the psychophysical task with knowledge about the
biological architecture and the neural sampling hypothesis.
Our work differs from a previous probabilistic model (Beck

et al., 2008) of the 2AFC task in two important aspects. First,
we assume that individual cortical sensory neurons represent
marginal posteriors over unobserved variables, while Beck
et al. (2008) assume that the population represents the likelihood
of a single unobserved variable. This aspect requires recurrent
connections within the sensory area as well as feedback con-
nections from higher areas that are missing in their model (see
Beck et al., 2011, 2012 and Grabska-Barwinska et al., 2013 for
probabilistic models incorporating recurrent connections).
Without the feedback connections in our model there would be
no task-dependent noise correlations, nor would there be CPs
that increase while the PK decreases. Second, our model differs
from that of Beck et al. in that the representation of probabilities
is sampling based (Fiser et al., 2010; Hoyer and Hyvärinen, 2003)
rather than based on a probabilistic population code (PPC) (Ma
et al., 2006). Preliminary evidence suggests, however, that
our results can be generalized to other neural representations
of probabilities, including PPC-based ones (Haefner, 2014; A.
Pouget, personal communication).
It has been suggested previously that priors also may been

encoded in feedforward weights (Ganguli and Simoncelli,
2010; Wei and Stocker, 2012). While this is likely for long-term
priors reflecting permanent statistics of the natural environment,
it appears impossible for the task-dependent context informa-
tion considered in our study that can vary on a trial-by-trial basis
(Cohen and Newsome, 2008) or indeed the influence of the stim-
ulus information at the beginning of a trial on later sensory beliefs
within the same trial (Figure 6E).
A recent paper (Wimmer et al., 2015) has presented a mecha-

nistic model that reproduces an increasing CP and a decreasing

A B C Figure 7. Time Dependency of PK
(A) Model prediction. Evidence early in the trial is

weighted more strongly than evidence presented

late in the trial.

(B) Empirical PK in a disparity discrimination task

is shown (Nienborg and Cumming, 2009).

(C) Information flow in our model: feedforward from

the retinal image It to the sensory representation xt
and from the sensory representation to the decision

D. Feedback is from decision to sensory represen-

tation and lateral within the sensory representation

(for equations see Supplemental Experimental

Procedures). Feedforward and feedback between

sensory representation and decision area form a

self-reinforcing loop entailing a decreasing PK.
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et al., 2015), we argue that belief propagation is the more
parsimonious explanation for the observed task-dependent
correlations.

The observation that the time courses of CPs and PKs differ
during the stimulus presentation has been a challenge to feed-
forward models of sensory processing and has been taken as
evidence for a feedback component in CPs (Nienborg and Cum-
ming, 2009). These findings are fully consistent with our model
where CPs contain both a feedforward and a feedback compo-
nent. The existence of a feedforward component canmost easily
be seen by the fact that CPs are larger than 0.5 at stimulus onset
when the model’s belief about the correct decision is still 50-50.
The magnitude of this bottom-up component follows the same
decreasing time course as the PK (Figure 7A) (Nienborg and
Cumming, 2009), with the difference accounted for by top-
down belief propagation. Furthermore, we have demonstrated
that the very same feedback signal that causes the increasing
CPs also causes a decreasing PK due to a positive feedback
loop between decision-making neurons and sensory neurons.
We stress that we did not hand-craft themodel structure in order
to fit these observations but that this feedback signal is a direct
result of performing online inference by sampling in this task.

There exist alternative explanations for a decreasing PK sug-
gesting that the brain inappropriately uses strategies optimal
for reaction-time tasks (integration-to-bound, Gold and Shadlen,
2007) or hypothesizing costs intrinsic to accumulating evidence
(Drugowitsch et al., 2012). However, our explanation demon-
strates that even if a neural decision circuit itself equally inte-
grates the signals it receives from sensory neurons over time,
as has been suggested recently (Brunton et al., 2013), its top-
down influence on the very same sensory neurons can lead to
early evidence being weighted more strongly than evidence
presented at the end of the trial if that evidence is weak. Future
work on extending our model to a reaction-time paradigm and
comparing its predictions with reaction-time data will be able
to assess the relative importance and explanatory power of
these different hypotheses.

Our study complements a growing body of literature suggest-
ing that sampling-based probabilistic inference may underly
higher perceptual and cognitive processes (Griffiths et al.,
2012; Vul et al., 2014), and it suggests that probabilities also
might be represented by samples in lower sensory processing
(given the compatibility with the data considered here). It is
particularly intriguing that basic visual perception appears to

be susceptible to the same confirmation bias that is ubiquitous
in the context of higher cognitive reasoning (Nickerson, 1998).
If the same two mechanisms that contribute to a decreasing
PK in our model (a sequential sampling approximation and evi-
dence accumulation on the basis of inferred beliefs instead
of directly observed information) also underlie higher-order
cognition, then this suggests a new candidate explanation for
the confirmation bias, different from previous accounts (Lieder
et al., 2012). More generally, our framework bridges cognitive
science and systems neuroscience by constructing a rational
process model (Griffiths et al., 2012) combining the generative
model for the psychophysical task with knowledge about the
biological architecture and the neural sampling hypothesis.
Our work differs from a previous probabilistic model (Beck

et al., 2008) of the 2AFC task in two important aspects. First,
we assume that individual cortical sensory neurons represent
marginal posteriors over unobserved variables, while Beck
et al. (2008) assume that the population represents the likelihood
of a single unobserved variable. This aspect requires recurrent
connections within the sensory area as well as feedback con-
nections from higher areas that are missing in their model (see
Beck et al., 2011, 2012 and Grabska-Barwinska et al., 2013 for
probabilistic models incorporating recurrent connections).
Without the feedback connections in our model there would be
no task-dependent noise correlations, nor would there be CPs
that increase while the PK decreases. Second, our model differs
from that of Beck et al. in that the representation of probabilities
is sampling based (Fiser et al., 2010; Hoyer and Hyvärinen, 2003)
rather than based on a probabilistic population code (PPC) (Ma
et al., 2006). Preliminary evidence suggests, however, that
our results can be generalized to other neural representations
of probabilities, including PPC-based ones (Haefner, 2014; A.
Pouget, personal communication).
It has been suggested previously that priors also may been

encoded in feedforward weights (Ganguli and Simoncelli,
2010; Wei and Stocker, 2012). While this is likely for long-term
priors reflecting permanent statistics of the natural environment,
it appears impossible for the task-dependent context informa-
tion considered in our study that can vary on a trial-by-trial basis
(Cohen and Newsome, 2008) or indeed the influence of the stim-
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et al., 2015), we argue that belief propagation is the more
parsimonious explanation for the observed task-dependent
correlations.

The observation that the time courses of CPs and PKs differ
during the stimulus presentation has been a challenge to feed-
forward models of sensory processing and has been taken as
evidence for a feedback component in CPs (Nienborg and Cum-
ming, 2009). These findings are fully consistent with our model
where CPs contain both a feedforward and a feedback compo-
nent. The existence of a feedforward component canmost easily
be seen by the fact that CPs are larger than 0.5 at stimulus onset
when the model’s belief about the correct decision is still 50-50.
The magnitude of this bottom-up component follows the same
decreasing time course as the PK (Figure 7A) (Nienborg and
Cumming, 2009), with the difference accounted for by top-
down belief propagation. Furthermore, we have demonstrated
that the very same feedback signal that causes the increasing
CPs also causes a decreasing PK due to a positive feedback
loop between decision-making neurons and sensory neurons.
We stress that we did not hand-craft themodel structure in order
to fit these observations but that this feedback signal is a direct
result of performing online inference by sampling in this task.

There exist alternative explanations for a decreasing PK sug-
gesting that the brain inappropriately uses strategies optimal
for reaction-time tasks (integration-to-bound, Gold and Shadlen,
2007) or hypothesizing costs intrinsic to accumulating evidence
(Drugowitsch et al., 2012). However, our explanation demon-
strates that even if a neural decision circuit itself equally inte-
grates the signals it receives from sensory neurons over time,
as has been suggested recently (Brunton et al., 2013), its top-
down influence on the very same sensory neurons can lead to
early evidence being weighted more strongly than evidence
presented at the end of the trial if that evidence is weak. Future
work on extending our model to a reaction-time paradigm and
comparing its predictions with reaction-time data will be able
to assess the relative importance and explanatory power of
these different hypotheses.

Our study complements a growing body of literature suggest-
ing that sampling-based probabilistic inference may underly
higher perceptual and cognitive processes (Griffiths et al.,
2012; Vul et al., 2014), and it suggests that probabilities also
might be represented by samples in lower sensory processing
(given the compatibility with the data considered here). It is
particularly intriguing that basic visual perception appears to

be susceptible to the same confirmation bias that is ubiquitous
in the context of higher cognitive reasoning (Nickerson, 1998).
If the same two mechanisms that contribute to a decreasing
PK in our model (a sequential sampling approximation and evi-
dence accumulation on the basis of inferred beliefs instead
of directly observed information) also underlie higher-order
cognition, then this suggests a new candidate explanation for
the confirmation bias, different from previous accounts (Lieder
et al., 2012). More generally, our framework bridges cognitive
science and systems neuroscience by constructing a rational
process model (Griffiths et al., 2012) combining the generative
model for the psychophysical task with knowledge about the
biological architecture and the neural sampling hypothesis.
Our work differs from a previous probabilistic model (Beck

et al., 2008) of the 2AFC task in two important aspects. First,
we assume that individual cortical sensory neurons represent
marginal posteriors over unobserved variables, while Beck
et al. (2008) assume that the population represents the likelihood
of a single unobserved variable. This aspect requires recurrent
connections within the sensory area as well as feedback con-
nections from higher areas that are missing in their model (see
Beck et al., 2011, 2012 and Grabska-Barwinska et al., 2013 for
probabilistic models incorporating recurrent connections).
Without the feedback connections in our model there would be
no task-dependent noise correlations, nor would there be CPs
that increase while the PK decreases. Second, our model differs
from that of Beck et al. in that the representation of probabilities
is sampling based (Fiser et al., 2010; Hoyer and Hyvärinen, 2003)
rather than based on a probabilistic population code (PPC) (Ma
et al., 2006). Preliminary evidence suggests, however, that
our results can be generalized to other neural representations
of probabilities, including PPC-based ones (Haefner, 2014; A.
Pouget, personal communication).
It has been suggested previously that priors also may been

encoded in feedforward weights (Ganguli and Simoncelli,
2010; Wei and Stocker, 2012). While this is likely for long-term
priors reflecting permanent statistics of the natural environment,
it appears impossible for the task-dependent context informa-
tion considered in our study that can vary on a trial-by-trial basis
(Cohen and Newsome, 2008) or indeed the influence of the stim-
ulus information at the beginning of a trial on later sensory beliefs
within the same trial (Figure 6E).
A recent paper (Wimmer et al., 2015) has presented a mecha-

nistic model that reproduces an increasing CP and a decreasing
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