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Introduction :
Our Framework Experiments
In evidence integration tasks,subjects make a categorical decision from a sequence of (typically i.i.d.) sensory information. Different sources of uncertainty: Perfoct We used an orientation-discrimination paradigm with templates embedded in noise.
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Sampling Model!>6] No bias correction (y=0):
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Generative model:
C = category / decision-area C 1| C |+ 1
X = sensory representation - -
e = evidence
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Full bias correction (y=1):
* Recency effect
* Impaired in task B

Summary
e Discrepancy In studies reporting evidence-weighting over time,
50% unexplainable by ideal observer.
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