Diversity Based Edge Pruning of Neural Networks Using Determinantal Point Processes

Introduction

Neural Network Pruning: Reduce the
size of the network without degrading its
performance much.

Motivation: Pruning can help reducing
the time complexity (of fine tuning) and
space complexity with pre-trained networks

containing billions of parameters (e.g.
BERT).

Limitation: Lots of pruning methods
available, but why do they work?

This Work: Takes a step towards
explaining pruning performance.

Preliminaries

Determinantal Point Process (DPP)

DPP is a probability distribution defined on the set
of subsets of a ground set (%).ForY C %,
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where L is the kernel matrix and Ly is the submatrix

defined by the rows and columns indexed by Y.
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Previous Work

» Idea:
- Sample a subset of nodes for
cach layer using the DPP z
defined by the kernel matrix @
defined as above.

Node Pruning using DPP-DIVNET (Mariet et al.)
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- Later some re-weighting of the

edgesis needed to

compensate for the lost
nodes (can be done
efficiently). O

- Need:

node:

I+1 _ g 0+1 I+1 I+1
a; —{aj1 y ..., d ,...,ajT}

- a,
- A kernel matrix
Ly = exp(—p

[ [

%)

Some representation of QI+l

IIIIIIIIIIIIIIIIl]IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Diversity based Edge Pruning of Neural Network

- Kernel for DPP: ,

. The kernel matrix is defined as: O

- 2
L, = exp(—Bl|wa; — wya | [)
- For layer [ there will be n; kernels

LY, ... L"

- Method:

Keep a subset of edges for each
layer using the DPP defined by
the above kernel matrix.

needed to compensate for the
lost edges

. Re-weighting of the edges is a;

- Retrieving Pruned Information by Reweighting
- 8§, ={i}, ..., i } := thesetofincoming edges chosen for the node
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1) Zelda Mariet and Suvrit Sra. Diversity networks: Neural network compression using determinantal point process.
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datasets.

- When reweighting is not applied, importance edge pruning performs the best in both the

DPP edge pruned network significantly outperforms all other pruning methods when

reweighting is added.

explored in Mariet et al.

datasets (see at 90\% for MNI ST and 70-90\% for CIFAR10).
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- Importance node pruning with reweighting performs better than DIVNET, which was not

- DPP edge pruned network generalizes better than the unpruned dense network for both the

CIFAR10
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Result

Conclusion & Future Work

- Extend for feed-forward networks with more than two layers.
- Explore in other neural network architectures.
- Can DPP-Edge tind winning tickets of Lottery Ticket Hypothesis?



