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Perception is Probabilistic

Sensory input is noisy and ambiguous

nferences made from this input are uncertain

t is behaviorally useful to represent this |
uncertainty. . \..

Key question: how does the brain represent and
compute with probability distributions?
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Further Motivation: The brain is the best inference
machine we know of; useful to reverse engineer how it
works!
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Forward vs Reverse Engineering

Forward Engineering: building a brain by
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implementing known (approximate) inference 2
algorithms in biologically plausible circuits. >
Either assume variational inference or MCMC 5
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Neuronal Response (1)
Reverse Engineering: observing
the brain’s inputs, spiking AR T
responses, and outputs and T
interpreting the whole process as R O
inference... /
Over what «
variables?
Samples or Parameters Probability or
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Discrete or Continuous? log Probability*

Overview

Sparse Coding Model [5]

Parametric and Sampling Models

Linear Probabilistic Population Codes (PPCs) [1-2]
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For a linear PPC, distribution over s belongs to an £ A (q%)'
exponential family with the firing rate (r) as natural % o =
parameters te Lo S
n neurons : 1 variable S ' =
= 2

n Q | I = a = = ‘ :
P(s|r) o< exp Z hi(s)r; Tt S

Neural Sampling Hypothesis [3-4]
Neural dynamics as MCMC sampling

Population encodes discrete values at a given
time, uncertainty is encoded over time

N neurons : n variables
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Nuisance Variables
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The Relationship between Uncertainty and Variability
Derivation 60 —
Geometric Intuition S0 T I f - Intuition: a hallmark of sampling is that wider posteriors result in
1. Define T(s) the manifold of images generated by scalar quantity s (here, oriented | ikelihood based on 40 | ¢ Neural variability - more variable responses
ratings —  — ; : : - ¢ vy
gratings) = = S NN WI " 7 = = | distance in image S % ' + 'y - Uncertainty over x results in more variable responses as expected
. . . space between 20 - . e . .
2. Define P(rlI) using the encoding model | rgconstruction n : $-¢ % % % % % . Uncertainty over s is distributed across the population, determined
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Pbra/in (I‘P)Pb’r‘ain (I‘) A %0 /2 w

P(r|T) =

Pbra,in (I)

3. Likelihood of s given t samples of r requires marginalizing over all possible images
that could have “caused” the given set of samples

J/‘ - Even for gratings,
N\ manifold is complicated

S

Preferred Orientation

P(xDs) = [ dIP(I|s)P(rt DI - ; ;
( ) (I]s) P( ) Finite Samples + Simulations
t
_ / dIP(I‘S) H P(r(t/) ‘I) %\ 1 S:lr:f)le : :10 Samples _100 Samples :5k Samples . Posteriors for small
G E | | ﬂ | ﬁVB numbers of
) — QVE. TUN
4. Recursively expand product over samples, resulting in product of terms: R | Q\ o | samples are poth
y expand p 9 oégo e W, i —, i wide and variable
Stim. Ori. (s) Stim. Ori. (s) Stim. Ori. (s) Stim. Ori. (s)

. . ST 3 150 3001 - Become sharper

i. term depending on mean of samples = | oo 1 and less variable

iii. integral that vanishes (becomes constant) as ¢ — oo P IALD 100! as the number of
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Implications and Summary

Sampling Code Parametric Code
P(r[T) P(s|r)
A 1
Explicit Code E Implicit Code
(Brain’s Latents) ' [(Quantity of Interest)
Direct Probability Code E log Probability Code
r o« P(r|I) : x log P(s|r)
Bayesian Encoding Bayesian Decoding
NOBY P T‘I P(sr) « exp (h(s )Tr)I

- PPC and Sampling are not mutually exclusive representations (if over different variables)

« Analogous to decoding task-specific quantities from a pre-trained model

- Simultaneous representation of different classes of probability codes is possible in the same system

 Results hold for any decoded variable, not just orientation

 Results hold for any internal model learned by the brain as long as decoded image converges to a
delta as number of samples increases

» Suggests other possible coding schemes like sampled mixtures-of-PPCs
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