Using the perceptual confirmation-bias to study learning and feedback
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II Introduction

. @ In evidence integration tasks, subjects make a

’ categorical decision from a sequence of (typically

: .i.d.) sensory information.[1,2.3,4.6,7,9]

e A psychophysical kernel (PK) quantifies the ‘weight

j subjects give to evidence in space or time.

. ® A perceptual confirmation bias (CB) occurs when

' people upweight information confirming existing
beliefs, thus strengthening those beliefs. This is
implied by a PK that decreases over time.[4.6]

2 |Possible PK | 3 |Generative model | 8 | Conclusion

o We recently showed perceptual CB could be explained
by assuming that the brain performs approximate '

inference in a hierarchical model in which
expectations influence sensory inferences. These
expectations are facilitated by feedback connections
. (FB).[!
o We here ask two key questions:
1. Does the brain adapt its inference algorithm to
the temporal correlations in the inputs?
2. |s FB as strong in the periphery as in the fovea
(which has been suggested is not the case)[8,10,11] :
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PK unchanged when the brain adjusts PK changes when the brain does not Stronger top-down feedback

as per temporal correlation of inputs  adjust as per temporal correlation of inputs gives stronger primacy
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Study1: Vary the duration of each stimulus frame

Observation: No significant difference in PK slope
Conclusion: Brain infers and adapts to correct rate
at which it receives independent information
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Experimental observations

Study2: Show temporal stimuli in fovea vs periphery
Observation: No significant difference in PK slope
Conclusion: FB in fovea and periphery are comparable
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With eyetracking: Annulus of 2.08 deg vs
8.967 deg around fixation marker
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