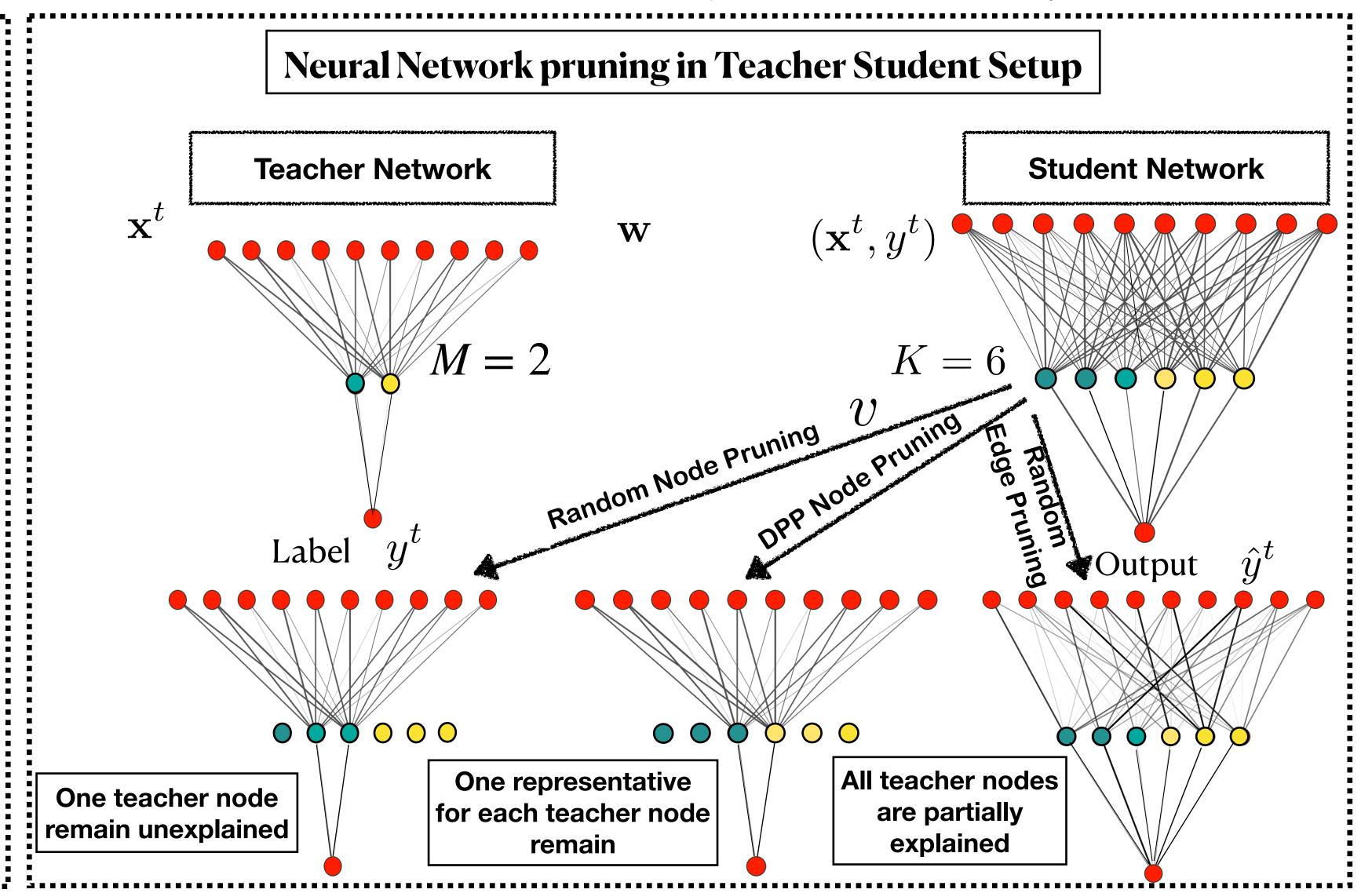
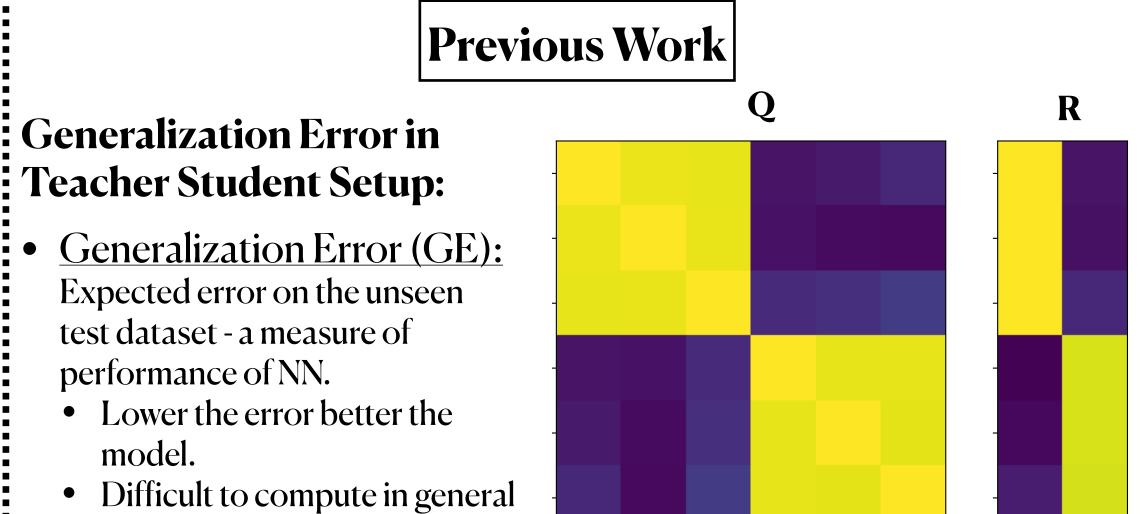
Understanding Diversity Based Neural Network Pruning in Teacher Student Setup

Rupam Acharyya¹, Ankani Chattoraj*², Boyu Zhang*³, Shouman Das⁴, Daniel Stefankovic³
Mathematics Department, University at Buffalo¹,
Department of Brain & Cognitive Science, University of Rochester²,
Department of Computer Science, University of Rochester³,
Department of Mathematics, University of Rochester⁴

Introduction

- Neural Network Pruning:
 Given a large trained neural network, how to reduce the size of the network without degrading its performance much?
- Motivation: Currently the pre-trained networks (e.g. BERT) have billions of parameters. Pruning can help reducing the time complexity (of fine tuning) and space complexity.
- Limitation: Lots of pruning methods available, but why do they work?
- This Work: Takes a step towards explaining pruning performance.





- GE in teacher student setup can be written as function of macroscopic order parameters:
- Correlation between student hidden nodes (Q).
- Correlation between student and teacher hidden nodes (R).

Determinantal Point Process (DPP): DPP is a probability distribution to sample diverse subsets of a ground set.

DPP Node Pruning: Sample a subset of nodes for each layer using the DPP defined by the kernel matrix defined as above. Later some *re-weighting* of the edges is needed to compensate for the lost nodes (can be done efficiently).

Result

Comparison between DPP node pruning and Random node pruning:

Theorem: For $k_m \leq M$ we have,

$$\mathbb{E}_f \left[\varepsilon_{k_n}^{Rand\ Node}(f) \right] \ge \varepsilon_{k_n}^{DPP\ Node}(f) \text{ and } \mathbb{E}_f \left[\hat{\varepsilon}_{k_n}^{Rand\ Node}(f) \right] \ge \hat{\varepsilon}_{k_n}^{DPP\ Node}(f)$$
 and, $\varepsilon_{k_n}^{Imp\ Node}(f) \ge \hat{\varepsilon}_{k_n}^{DPP\ Node}(f)$, i.e., DPP node pruning outperforms random node pruning in the above setup. Here the expectation is taken over the the subsets of hidden nodes of size k_n chosen u.a.r

Comparison between DPP node pruning and Random edge pruning:

Theorem: Let k_n and c satisfy the equation below, and $0 \le c \le \frac{1}{Z}$ and $Z(=\frac{K}{M}) \ge 4$. Then $\varepsilon_k^{DPP\ Node}(f) \ge \varepsilon_c^{Rand\ Edge}(\mathbb{E}[f])$,

i.e., Random edge pruning outperforms DPP node pruning in the above setup.

Node Edge Ratio:
$$\frac{k_n}{K} = \lim_{N \to \infty} \frac{k_e}{N} = c$$

Simulations

DPP node pruning vs Other node pruning

Data:

• Sampled the 800000 i.i.d input samples from $\mathcal{N}(0,1)$ as training data and 80000 as testing data.

• $\mathcal{N}(0,1)$ as $\mathcal{N}(0,1)$ a

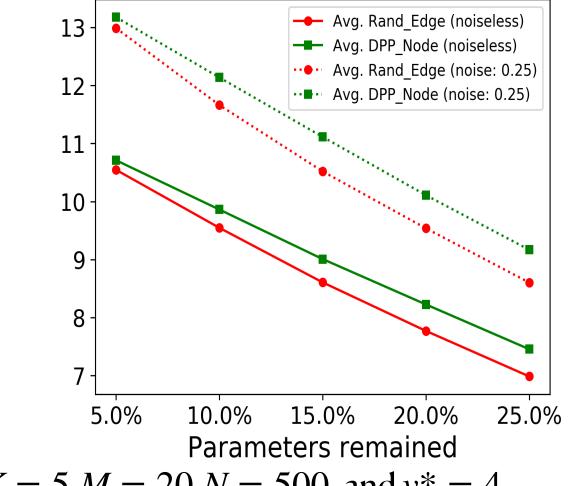
• M = 2, K = 6, N = 500, and $v^* = 4$

Parameters remained

DPP Node pruning vs Random edge pruning

as test data distribution is

unknown.



- $K = 5, M = 20, N = 500, \text{ and } v^* = 4$
- Node-to-edge ratio: [1:83, 2:166, 3:250, 4:333, 5:417, 6:500]

Conclusion & Future Work

- Compared different pruning methods in Teacher Student framework - first theoretical comparison.
- DPP node pruning vs Random and Importance node pruning.
- Random edge pruning vs DPP node pruning.
- Extend for feed-forward networks with more than two layers and in other neural network architectures.

Reference: 1) Zelda Mariet and Suvrit Sra. Diversity networks: Neural network compression using determinantal point process.

2) ebastian Goldt, Madhu Advani, Andrew M Saxe, Florent Krzakala, and Lenka Zdeborov Dynamics of stochastic gradient descent for two-layer neural networks in the teacher-student setup.