# Understanding Diversity Based Neural Network Pruning in Teacher Student Setup

Rupam Acharyya<sup>1</sup>, Ankani Chattoraj\*<sup>2</sup>, Boyu Zhang\*<sup>3</sup>, Shouman Das<sup>4</sup>, Daniel Stefankovic<sup>3</sup>
Mathematics Department, University at Buffalo<sup>1</sup>,
Department of Brain & Cognitive Science, University of Rochester<sup>2</sup>,
Department of Computer Science, University of Rochester<sup>3</sup>,
Department of Mathematics, University of Rochester<sup>4</sup>

### Introduction

- Neural Network Pruning:
  Given a large trained neural network, how to reduce the size of the network without degrading its performance much?
- Motivation: Currently the pre-trained networks (e.g. BERT) have billions of parameters. Pruning can help reducing the time complexity (of fine tuning) and space complexity.
- Limitation: Lots of pruning methods available, but why do they work?
- This Work: Takes a step towards explaining pruning performance.





- GE in teacher student setup can be written as function of macroscopic order parameters:
- Correlation between student hidden nodes (Q).
- Correlation between student and teacher hidden nodes (R).

**Determinantal Point Process (DPP):** DPP is a probability distribution to sample diverse subsets of a ground set.

**DPP Node Pruning:** Sample a subset of nodes for each layer using the DPP defined by the kernel matrix defined as above. Later some *re-weighting* of the edges is needed to compensate for the lost nodes (can be done efficiently).

#### Result

## Comparison between DPP node pruning and Random node pruning:

**Theorem:** For  $k_m \leq M$  we have,

$$\mathbb{E}_f \left[ \varepsilon_{k_n}^{Rand\ Node}(f) \right] \ge \varepsilon_{k_n}^{DPP\ Node}(f) \text{ and } \mathbb{E}_f \left[ \hat{\varepsilon}_{k_n}^{Rand\ Node}(f) \right] \ge \hat{\varepsilon}_{k_n}^{DPP\ Node}(f)$$
 and,  $\varepsilon_{k_n}^{Imp\ Node}(f) \ge \hat{\varepsilon}_{k_n}^{DPP\ Node}(f)$ , i.e., DPP node pruning outperforms random node pruning in the above setup. Here the expectation is taken over the the subsets of hidden nodes of size  $k_n$  chosen u.a.r

### Comparison between DPP node pruning and Random edge pruning:

**Theorem:** Let  $k_n$  and c satisfy the equation below, and  $0 \le c \le \frac{1}{Z}$  and  $Z(=\frac{K}{M}) \ge 4$ . Then  $\varepsilon_k^{DPP\ Node}(f) \ge \varepsilon_c^{Rand\ Edge}(\mathbb{E}[f])$ ,

i.e., Random edge pruning outperforms DPP node pruning in the above setup.

Node Edge Ratio: 
$$\frac{k_n}{K} = \lim_{N \to \infty} \frac{k_e}{N} = c$$

# Simulations

### DPP node pruning vs Other node pruning

Data:

• Sampled the 800000 i.i.d input samples from  $\mathcal{N}(0,1)$  as training data and 80000 as testing data.

•  $\mathcal{N}(0,1)$  as  $\mathcal{N}(0,1)$  a

# • M = 2, K = 6, N = 500, and $v^* = 4$

Parameters remained

# DPP Node pruning vs Random edge pruning

as test data distribution is

unknown.



- $K = 5, M = 20, N = 500, \text{ and } v^* = 4$
- Node-to-edge ratio: [1:83, 2:166, 3:250, 4:333, 5:417, 6:500]

# Conclusion & Future Work

- Compared different pruning methods in Teacher Student framework - first theoretical comparison.
- DPP node pruning vs Random and Importance node pruning.
- Random edge pruning vs DPP node pruning.
- Extend for feed-forward networks with more than two layers and in other neural network architectures.

Reference: 1) Zelda Mariet and Suvrit Sra. Diversity networks: Neural network compression using determinantal point process.

2) ebastian Goldt, Madhu Advani, Andrew M Saxe, Florent Krzakala, and Lenka Zdeborov Dynamics of stochastic gradient descent for two-layer neural networks in the teacher-student setup.